
SANDIA REPORT
SAND2002-0121
Unlimited Release
Printed January 2002

ASCI Applications
Software Quality Engineering Practices

John Zepper, Kathy Aragon, Molly Ellis, Kathleen Byle, and Donna Eaton

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department
of Energy by Sandia Corporation.

NOTICE:  This report was prepared as an account of work sponsored by an agency
of the United States Government.  Neither the United States Government, nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represent
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof,
or any of their contractors or subcontractors.  The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering:  http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA  22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order:  http://www.ntis.gov/ordering.htm

mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov


3

SAND2002-0121
Unlimited Release

Printed January 2002

Sandia National Laboratories
ASCI Applications

Software Quality Engineering
Practices

Version 1.0

John Zepper and Kathy Aragon
Production Computing/SIERRA Architecture

Molly Ellis, Kathleen Byle, and Donna Eaton
Information Technology and Data Modeling

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0826

Abstract

This document provides a guide to the deployment of the software verification
activities, software engineering practices, and project management principles that
guide the development of Accelerated Strategic Computing Initiative (ASCI)
applications software at Sandia National Laboratories (Sandia). The goal of this
document is to identify practices and activities that will foster the development of
reliable and trusted products produced by the ASCI Applications program.
Document contents include an explanation of the structure and purpose of the
ASCI Quality Management Council, an overview of the software development
lifecycle, an outline of the practices and activities that should be followed, and an
assessment tool. These sections map practices and activities at Sandia to the
ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a
Department of Energy document.



4

Acknowledgements

The authors would like to thank the following individuals for their reviews, comments, and
contributions in preparing this document: Henry Abeyta, Dan Carroll, Edward Cull, David
Cuyler, Carter Edwards, Joe Fernandez, Christi Forsythe , Gary Froehlich, Ann Hodges, Scott
Hutchinson, Stephen Lott, Mike McGlaun, David Peercy, James Peery, Martin Pilch, Harold
Radloff, Rhonda Reinert, Alex Treadway, Janice Washington, William Moffatt, David Womble,
and all code team members and managers who reviewed this document.



5

Table of Contents

Executive Summary............................................................................................................ 7
Commitment ........................................................................................................................ 8
1 Introduction................................................................................................................... 9

1.1 Background........................................................................................................... 9
1.2 Purpose ................................................................................................................. 9
1.3 Scope .................................................................................................................. 10
1.4 Graded Approach................................................................................................ 12

2 ASCI Quality Management Council ........................................................................... 13
3 Software Quality Engineering Practices ..................................................................... 14

3.1 Document Organization...................................................................................... 15
3.2 Software Verification.......................................................................................... 17
3.3 Software Engineering ......................................................................................... 19

3.3.1 Requirements Phase................................................................................. 20
3.3.2 Development Phase................................................................................. 22

3.3.2.1 Design Subphase....................................................................... 23
3.3.2.2 Implementation Subphase......................................................... 25
3.3.2.3 Test Subphase ........................................................................... 27

3.3.2.3.1 Test Requirements............................................................................. 28
3.3.3 Release Phase .......................................................................................... 31

3.4 Project Management ........................................................................................... 34
3.4.1 Project Planning....................................................................................... 34
3.4.2 Tracking and Oversight ........................................................................... 35
3.4.3 Risk Management.................................................................................... 35

3.5 Support Elements................................................................................................ 37
3.5.1 Requirements Management ..................................................................... 38
3.5.2 Configuration Management ..................................................................... 38
3.5.3 Third Party Software ............................................................................... 39
3.5.4 Training.................................................................................................... 40

4 Assessment Tool & Gap Analysis............................................................................... 41
References ......................................................................................................................... 50
Appendix A: Glossary and Acronyms .............................................................................. 51
Appendix B: Mapping and Tailoring Methods ................................................................. 54
Appendix C: Assessment Checklist .................................................................................. 71

List of Figures
Figure 1.  Context of practices document. ........................................................................ 10
Figure 2.  Requirements flow pyramid.............................................................................. 11
Figure 3.  ASCI software program organization. .............................................................. 14

List of Tables
Table 1. Sandia ASCI Applications................................................................................ 11
Table 2. Class Identification Tool.................................................................................. 12
Table 3. Software Verification Summary....................................................................... 17
Table 4. Requirements Phase Summary......................................................................... 20



6

Table 5. Development Phase Summary.......................................................................... 22
Table 6. Design Subphase Summary.............................................................................. 23
Table 7. Implementation Subphase Summary................................................................ 25
Table 8. Test Subphase Summary.................................................................................. 27
Table 9. Release Phase Summary................................................................................... 31
Table 10. Project Management Summary........................................................................ 34
Table 11. Support Elements Summary............................................................................. 37
Table 12. Mapping of Key Elements to Practices............................................................ 54
Table 13. Mapping of Deployment Practices to Key Elements of Software

Verification....................................................................................................... 55
Table 14. Mapping of Deployment Practices to Key Elements of Software

Engineering....................................................................................................... 57
Table 15. Mapping of Deployment Practices to Key Elements of Project

Management ..................................................................................................... 57
Table 16. Mapping of Deployment Practices to DOE/AL's QC-1................................... 59



7

Executive Summary

This document is the Sandia National Laboratories (Sandia) Applications program deployment of
the Department of Energy (DOE) document ASCI Software Quality Engineering: Goals,
Principles, and Guidelines (GP&G). The GP&G specifies the Accelerated Strategic Computing
Initiative (ASCI) program's requirements for software quality engineering at each laboratory.
This document and the GP&G both map to Quality Criteria (QC-1), a document produced by the
Department of Energy/Albuquerque Office (DOE/AL). Both Sandia’s document and the GP&G
recognize the significance of following the QC-1 standard in the development of nuclear weapons
software codes.

This document builds on the GP&G foundation to specify tangible practices and activities that
will establish confidence in our codes and credibility in our results. The document includes the
following:

• tailored GP&G requirements to fit the software development process of the applications
program

• a description of management involvement in the software quality improvement process
• a description of the software quality improvement process

This document establishes the application code teams' commitment to improving their software
products by applying cost-effective software engineering quality practices.  These practices
comprise an important part of the ASCI Verification and Validation Program.  Individuals
interested in validation issues should contact the Verification and Validation program, which is
responsible for validation of the models.  Those interested in the overall structure of the ASCI
program and the interplay of its parts should consult the ASCI Program Plan or ASCI
Implementation Plans.

This document is organized into four sections. Section 1 describes how Sandia has integrated the
GP&G requirements into the NNSA (National Nuclear Security Agency) ASCI program. Section
2 discusses the ASCI Quality Management Council (AQMC). The council’s purpose is to sustain
and improve software process and products throughout the defined lifecycle. Section 3
enumerates the main practices that compose the development of Sandia ASCI application
software. Section 4 presents an assessment tool that was developed based on the practices in this
document. This tool provides application code teams a method for performing a self-assessment
and gap analysis. Information produced by using the tool will enable application code teams and
management to perform path-forward analysis for software process improvement. Appendix A
defines special terms and acronyms. Appendix B illustrates how this document maps and aligns
with the GP&G as well as to QC-1.  Appendix C consists of a blank assessment tool.



8

Commitment

The Sandia ASCI Applications program will follow the processes, practices, and activities
outlined in this document. Thus the project teams will provide accountability to NNSA in
demonstrating consistent SQE results. The goal of this document is to foster organizational
consistency by defining common practices and by facilitating the use of common tools and
processes where feasible. These practices and activities will be modified and improved as the
code development process matures. Our intent is to provide tangible evidence demonstrating high
confidence in ASCI simulations at Sandia.

Approved By

__________________________________________ _______________
Michael McGlaun, Date
Sandia ASCI Applications Manager

Concurred By

__________________________________________ _______________
Thomas Bickel, Date
Sandia Director,
Engineering Sciences Center

___________________________________________ ______________
Michael Vahle, Date
Sandia ASCI Program Manager

___________________________________________ ______________
Henry Abeyta,
Deputy Director for System Engineering, Date
Sandia/NM

__________________________________________ ______________
Edward Cull,
Deputy Director for Weapons System Engineering, Date
Sandia/CA



9

1 Introduction

1.1 Background

The National Nuclear Security Agency (NNSA) has created the Stockpile Stewardship Program
(SSP) to provide and ensure confidence in the safety, performance, and reliability of the U.S.
nuclear stockpile in the absence of underground testing. To this end, NNSA has enabled the
Accelerated Strategic Computing Initiative (ASCI) to support the SSP in transitioning from test-
based to computational modeling and simulation-based methods. The ASCI program will adhere
to the specifications for software quality assurance defined in the document Quality Criteria (QC-
1) produced by the Department of Energy/Albuquerque Office (DOE/AL).

The ASCI program involves coordination among the three nuclear weapon laboratories, all of
which have contributed to the development of a set of guiding principles. The ASCI Software
Quality Engineering: Goals, Principles, and Guidelines (GP&G) provides direction for all ASCI
software projects. The GP&G specifies that each laboratory will select and tailor their best
practices to achieve the stated goals of 1) establishing confidence in codes and 2) establishing
credibility in results.

The GP&G organizes the ASCI guidelines into three major areas: 1) software engineering,
2) software verification, and 3) project management. The GP&G requires that each site develop
its own specific practices to appropriately implement the guidelines. Taking direction from the
GP&G, this document includes an assessment tool that provides a method of identifying the
current state of site-specific practices for applications at Sandia National Laboratories (Sandia).
This document also provides a mechanism for facilitating improvement of those practices.

1.2 Purpose

The purpose of this document is to describe practices that will maintain a high level of confidence
in ASCI-developed software at Sandia. The document is organized to provide a straightforward
guide to the deployment of the software engineering practices, verification activities, and project
planning and oversight practices that guide the development of ASCI applications software at
Sandia.

This document explains the purpose of the ASCI Quality Engineering Management Council
(AQMC) in overseeing and improving software initiatives from an organizational perspective.
The document provides an overview of the Sandia ASCI applications software-development
lifecycle. This lifecycle specifies the practices that should be followed in developing robust,
effective, and efficiently written applications. A checklist of recommended practices is provided
in the assessment tool, and a mapping mechanism is included (in Appendix B) that traces these
practices to the GP&G to satisfy the goals of that document. The practices identified herein
require that individual application code teams be responsible for implementing and producing
evidence that demonstrates adherence to requirements of this document. The documents and their
owners are illustrated in Figure 1.



10

DOCUMENT OWNER

Figure 1.  Context of practices document.

The following entities are responsible for direction and implementation of the documents in
Figure 1:

Entity Responsibility
NNSA Provides guidance to the ASCI Tri-labs in developing GP&G

AQMC Sets policy and ensures institutionalization of practices

Sandia Applications Implements GP&G

Sandia V&V Provides independent assessment verification and validation (V&V)
of application code teams in applying GP&G

Sandia Code Teams Compiles/maintains objective evidence

1.3 Scope

The provisions of this document pertain to the development and support of software within the
Sandia ASCI Applications program. The practices that are outlined are especially intended to
target ASCI application codes.

Figure 2 illustrates the context of the ASCI application codes in relationship to stockpile-driven
applications.

ASCI Tri-labs

Applications Practices Document

SQE Goals, Principles, & Guidelines

Code-specific Objective Evidence

Sandia ASCI Applications
Program Element Manager

Sandia ASCI Codes



11

Figure 2.  Requirements flow pyramid.

This document is part of an existing and planned suite of guidance and requirements documents
that are intended to institutionalize traceable credibility to stockpile computing activities. These
other documents are

• Guidelines for V&V Plans: Guidelines for Sandia ASCI Verification and Validation
Plans: Version 2.0, SAND2000-3101, January 2001

• Peer Review: Peer Review Process for the Sandia ASCI V&V Program: Version 1.0,
SAND2000-3099, January 2001

Examples of current code team applications to which this document applies are illustrated in
Table 1.

Table 1.  Sandia ASCI Applications

Application Category Application Name

Framework SIERRA, ALEGRA

Thermal, Fluid CALORE, FUEGO, PREMO, VIPAR, ARIA

Structural and Solid Mechanics SALINAS, PRESTO, ADAGIO, ANDANTE

Electrical Device and Circuit HPEMS (e.g. XYCE)

ElectroQuasiStatics ALEGRA

Shock Physics ALEGRA

Libraries and Algorithms Trilinos, Petra, Dakota, Verde, Zoltan, ACME

Particle Transport ITS, CEPTRE, NuGET

Electromagnetics EMPHASIS, CABANA

Mesh Generation CUBIT

See Section 3.5.3 for additional detail on third party software that is used by any of the
applications.



12

1.4 Graded Approach

Sandia ASCI applications software project teams will use a graded approach in applying the
practices described in this document. A graded approach means that projects will apply a level of
formality and rigor appropriate to their application. The following guidelines for determining an
appropriate class apply:

• Class A codes will include applications intended for weapon design or qualification. All of
the ASCI-funded codes listed in Table 1, plus future codes that come under the Sandia ASCI
applications umbrella that are intended for weapon design or qualification, are Class A
projects. All of the practices identified in the assessment tool will be required for Class A
software development.

• Class B  codes are not intended for use in weapon design or qualification. Examples include
ASCI-funded research codes or prototype software that has not been incorporated into a
production code. Class B projects are not required to address all of the practices in the
assessment tool. They are, however, expected to demonstrate good project management
practices, a clear understanding of what is expected of the software requirements, and a
method of determining whether the code meets the requirements through tests and test plans.

• Class C codes may be used for weapon design and qualification but are not listed in Table 1.
These legacy codes, not supported by ASCI, have possibly been in existence for some time
and may be in a redevelopment state (being rewritten to one of the applications listed in Table
1).

By considering impact in the ASCI production environment (column 2 of Table 2), projects can
identify the class for their activities. Project leads are responsible for self-assessing their class.
This class must be reviewed and approved by the AQMC.

Table 2.  Class Identification Tool

Class Categories
Class Impact in ASCI Production

Environment
Adherence to Practices Listed in

Assessment Tool

A Used in weapon design or
qualification As specified by the AQMC

B Not used in weapon design or
qualification

R&D code prototype system

Not all practices required, only:
Project management: 6a,7a,7b,7c,8a
Requirements Phase: 1a,1b,1c,1d,1e,1f,1g
Test Subphase: 4a,4b,4c,4d,4e,4f

C Existing legacy application not
being developed under ASCI
program auspices

Not bound by practices; should apply as
appropriate



13

2 ASCI Quality Management Council

Implementation of the GP&G recommendations requires the commitment, support, and oversight
of the organizations performing the work to ensure that software engineering process
improvements are applied consistently and effectively. To fulfill the requirements of QC-1, the
Sandia ASCI Applications program director has established the AQMC (ASCI Quality
Management Council). The AQMC is an oversight group that is responsible for setting and
directing the strategy for implementing quality systems, including software engineering processes
and software process improvements, for all ASCI software projects. The AQMC will ensure
consistent and cost effective implementation of software quality engineering in all ASCI software
projects.

The AQMC reports to the ASCI program director and is composed of the program element
managers who have software development and maintenance activities within their program
element, the V&V program element manager, and the ASCI program manager. The AQMC will
meet at least twice a year to review the development and implementation of software engineering
practices and will publish an annual report on the state of SQE within ASCI.

Responsibilities of the AQMC include
• setting priorities
• communicating best practices among the software development teams
• monitoring and documenting compliance with guidelines set forth in this document
• authorizing modifications to policies and practices
• reviewing and assessing quality initiatives in the ASCI program
• coordinating independent and external assessments
• maintaining this document and any other documents under its purview
• convening working groups to support development of policies and practices

The AQMC will establish the software engineering practices that must be implemented on
software development projects throughout the ASCI program. The AQMC will use a phased
approach in establishing requirements commensurate with the stage in the lifecycle of software
development efforts. The assessment tool, discussed in Section 4, will be updated and published
annually as a mechanism for communicating the requirements baseline. The Sandia ASCI
Applications program element manager is responsible for implementing this report’s practices in
the Sandia ASCI Applications program.



14

3 Software Quality Engineering Practices

The Sandia ASCI Applications SQE program is described in this section. This program has been
developed following the organization of the GP&G: Software Verification, Software Engineering,
and Project Management. A fourth concept has been added—Support Elements. Support
Elements capture aspects common to all three of the guidelines, such as training, or those that
have overarching implications for the success of the software program, such as configuration
management. See Figure 3 for a pictorial representation of the program organization.

The organization represented in Figure 3 encompasses the main principles that guide the
development of Sandia ASCI application software. The heart of this figure is the software
lifecycle phases – Requirements, Development, and Release -- that include the core practices of
Software Engineering. Overlying the lifecycle is Project Management and underlying it is
Software Verification. Project Management provides the planning practices, while Software
Verification provides the assurance practices throughout the lifecycle. Applying to every product
activity are the Support Elements, which include such disciplines as requirements management,
configuration management, third party software management, and training. The software lifecycle
phases and associated practices will be the focus of discussion in this section; however, the other
guideline areas will be explained and their significance will be briefly explored.

This document requires no strict chronology of events, provided the requirements of all the
phases are satisfied, nor does it preclude the implementation of any specific development
methodologies.

Figure 3.  ASCI software program organization.



15

3.1 Document Organization

Following the program organization, this document has been constructed along the guidelines of
the GP&G, tailored to the Sandia site-specific environment. The main areas generally begin with
a short introduction, which is followed by a summary table. When needed, additional detail
follows the table. After the areas of Software Verification, Software Engineering, Project
Management, and Support Elements are described, an assessment tool based on the areas is
provided. Appendices list terms used in this document, a mapping from this document to the
GP&G, as well as a mapping to QC-1.

Tables in the following sections share common headings—inputs, practices, outputs, and metrics.
Phases are significant in Section 3.3 (Software Engineering) as they relate to the code
development lifecycle. However, for consistency, the tables that summarize Software
Verification, Project Management, and Support Elements also include the same headings, which
are described below. The examples provided in the discussion of Inputs and Outputs pertain
primarily to the Software Engineering phases.

Inputs
Suggested inputs provide guidance for the artifacts that are needed to complete the practices or to
create suggested outputs for the given area or phase. There are two types of suggested inputs:
1) outputs from the previous phase and 2) an artifact that is outside or external to the lifecycle.
For example, in the Design Subphase of the Development Phase, one of the suggested inputs is
“Outputs from the Requirements Phase.” The reader should examine the outputs from the
Requirements Phase to determine the inputs to the Design Subphase.

Practices
Each area of the ASCI software program organization (see Figure 3) and each phase of the code
development process (Software Engineering) consists of practices that must be accomplished in
order to complete the given area or phase. These practices are reflected in the Assessment
Checklist (Section 4 and Appendix C).

Outputs
Outputs provide guidance for the artifacts that are required to complete the practices for the given
area or phase. There are certain suggested outputs at each phase that will be generated by the
various practices: 1) feedback, 2) artifacts that are to be configuration controlled, and 3) issues
that are created during the lifecycle.

Metrics
The GP&G defines metrics as “… the activity of collecting information for the characterization,
understanding, and evaluation of processes and products.” The GP&G states that “only metrics
that can be demonstrated to assist in meeting project and/or the V&V program’s goals should be
chosen.” In alignment with the intent that the design, collection, and analysis of metrics
contribute to project success and productivity, an authoritative source in Software Metrics, Kan
(1997), states:

Metrics and measurements must progress and mature with the development process of the
organization. If the development process is still in the initial stage of the maturity
spectrum, a heavy focus on metrics may be counter productive. … In general, the starting
metrics ought to be closely related to the final product deliverable.



16

It is strongly recommended that those who are subject matter experts in the final product be
involved in specifying metrics designed to increase product quality and process productivity.
Strong customer involvement is also recommended. Metrics are provided for each of the software
lifecycle development phases. These metrics can be tailored based on the requirements of the
final product.

Named reviews, for which metrics are collected, need to be included in each phase/subphase.
These metrics provide the required evidence that the review occurred. Suggested beginning
metrics include the following:

• type of review
• date of review
• who performed review
• artifact(s) reviewed
• number of person hours spent
• number of problems/issues found
• number of problems/issues not resolved .

Issues are an expected output of all phases of the development lifecycle. Statistics metrics should
be reviewed by project leaders to determine status and to target areas for improvement. Suggested
metrics include the following:

• issue ID
• issue submitter
• issue date
• issue severity
• number of issues
• number of open issues
• number of closed issues
• number of deferred issues
• average time issue is open .



17

3.2 Software Verification

Software verification is achieved through the practices of reviews and testing throughout the
software lifecycle. The activities of testing and review ensure that evidence is produced which
demonstrates that verification is occurring as needed. Training, education, and experience enable
staff to have the ability to carry out necessary software verification practices. Training is
described in Section 3.5.4.

Table 3.  Software Verification Summary

SOFTWARE VERIFICATION
Overview:
The purpose of Software Verification is to ensure that the released software product
complies with software requirements.
Inputs:

• Software requirements
• Existing code
• Existing lifecycle artifacts

Practices:
♦ Testing: general, unit/integration, regression, verification, installation.
♦ Reviews: of artifacts, including algorithms, numerical methods, requirements trace,

design, test plans.
♦ Produce lifecycle artifacts that demonstrate transformation of requirements into

product.
Outputs:

• Verified software product
• Lifecycle artifacts that demonstrate transformation of requirements into product
• Evidence of review and approval of verification-related artifacts

Metrics:
• Code Coverage
• Review statistics

Testing
Testing is a critical component of software verification. The goals of testing are 1) to identify
errors that need to be corrected and 2) to contribute to user confidence in the code. There are
several categories of testing methods:

• general
• unit/integration
• regression
• system software verification
• installation

These tests range from focusing on the internal structural correctness of the software (white box)
to the demonstration of high-level requirements that the software is to satisfy (black box).



18

Specific requirements for testing are provided in section 3.3.2.3. A general discussion of the test
categories is provided below.

General testing covers tests that need to be conducted on all software products to meet specific
requirements: code coverage, memory testing, and static compiler tests.

Unit/integration testing covers low-level structural testing of modules and integrated modules
prior to full software product testing.

Regression testing can consist of a combination of white box and black box tests and is required
after a change has been made to previously tested code. The focus is typically on adequate
coverage of the code, ensuring defects are not introduced by the changes and that the changes
function properly.

System software verification testing is conducted to demonstrate that specific modeling
capabilities function properly without the use of experimental or real data for comparison of
results. Tests include analytic solutions, semi-analytic solutions, and idealized solutions. The
manufactured solution testing approach may be used to demonstrate specific algorithm
implementations.

Installation testing is conducted to confirm that the software installation on the target platform
occurred correctly. Installation tests are typically delivered with the software for execution by the
end user. These tests may form the basis of customer acceptance tests.

Successful testing of an application code is dependent on the knowledge and expertise of those
designing test cases, the knowledge and expertise of those who review test case design, and the
results of test execution.

Reviews
Reviews are an important aspect of software verification. Reviews are defined for each lifecycle
phase and are divided into three types: technical, quality, and management. The three types of
reviews provide verification evidence that technical, quality, and management commitment
requirements have been met.

Each phase of the code development process requires one or more reviews. Reviewers may be
external or internal to the application team, depending on the type and purpose of the review.
Evidence from a review is required, including such attributes as the date, review type, and review
results (e.g., defects found, effort expended, issues identified, actions, responsibilities, target
dates for resolution of actions). Code development teams are responsible for generating and
submitting review evidence and any associated document artifacts.

Produce Lifecycle Artifacts
During the course of following this procedure, the production of artifacts, or objective evidence,
is needed. Artifacts provide documentation that is useful in further development of the code,
verification of technical soundness, and code maintenance. The guidelines for producing a
particular artifact are given in the phase associated with the production of the artifact. Artifacts
may be separate entities or combined into single documents as needed. For example, the
documentation of requirements and the test plan could be placed in a single document. All
artifacts are subject to review (technical, quality, and management). Review evidence is a type of
artifact.



19

3.3 Software Engineering

There are three main phases in the Software Engineering Development Lifecycle: Requirements,
Development, and Release (see previous Figure 3). The Development Phase also includes three
subphases—Design, Implementation, and Test. Subsequent discussions in this document may use
the term phase to mean either phase or subphase because both include common areas: inputs,
practices, outputs, and metrics.

Each phase includes a summary table followed by additional detail on what the suggested
practices actually involve. The practices are listed again in the assessment tool in Section 4 where
a recommended AQMC number follows. This number corresponds to the organizational goal
level currently recommended by the AQMC as applied to Class A code teams:

3 = should be fully implementing the practice
2 = should be partially implementing the practice
1 = should be planning to implement the practice

Feedback is an important part of the iterative lifecycle. Feedback occurs when the application
team discovers that the current phase impacts a previous phase and the impact must be addressed
before the current phase can be completed or the next phase addressed. Feedback may result in
revisiting a previous phase, through multiple iterations, to rework or reissue a particular
deliverable.

The code development process, shown previously in figure 3, consists of phases whose practices
and artifacts embody the software application being developed at a point in time. The phases are
concerned with actually doing the work of building a software application and not specifically
concerned with managing the work. The practices that contribute to these phases are the core
practices of Software Engineering. The execution of a phase may cause portions of a previous
phase(s) to be modified. In that case, changes to previous outputs/artifacts shall be modified and
verified to the same level of rigor as the original.

The Software Engineering phases are discussed next.



20

3.3.1 Requirements Phase

Table 4.  Requirements Phase Summary

REQUIREMENTS PHASE
Overview:
The purpose of the Requirements Phase is to develop, capture, baseline, and
communicate the software product requirements. These requirements are restated,
refined, or derived from the system requirements, e.g., requirements from stockpile
drivers.
Inputs:

• Requirements: e.g., customer, quality, functional, product, stockpile driver
• Expert computational physics and mechanics knowledge, e.g., theory manual,

published papers
• Numerical algorithm solvers
• Issues

Practices:
♦ Derive software requirements.
♦ Document software requirements.
♦ Assess feasibility, if applicable, and generate estimates for budget, resources, etc.
♦ Establish acceptance criteria based on requirements.*
♦ Determine necessary links to other layers of requirements, code, and tests.
♦ Ensure requirements traceability throughout the subsequent software phases.
♦ Review and approve requirement artifacts.
Outputs:

• Requirements (suitable for translation into design and implementation) that have
been derived, documented, reviewed, and approved

• Traceability links
• Evidence of reviews
• Configuration-controlled artifacts
• Issues

Metrics:
• Issues statistics
• Requirements change statistics, e.g., number of requirements (at any given time

period), number (or %) requirements changed (added, deleted, modified) over
specified time period

*  acceptance criteria based on testing methodologies selected; will be described in test plan.

Derive Software Requirements
The Requirements Phase of the lifecycle begins with the input of requirements from any of
several sources. These inputs may start out as a stockpile driver, a programmatic requirement, a
physical or functional requirement, a modeling or simulation requirement, or an issue submitted
against a previous version of derived software requirements. It is then the task of the software



21

project team to take these inputs, analyze, understand, and derive the software requirements that
will be used as the basis for designing and coding the resultant software application.

Document Software Requirements
As the software requirements are derived, they must be documented. Documenting requirements
may be accomplished by capturing them in a word processing document, a spreadsheet, or in a
more sophisticated tool. Capturing the derived requirements facilitates the prioritization of the
requirements. It also leads to developing a specification of how the requirements will be
implemented.

Assess Feasibility
The documented, derived requirements are then assessed for their feasibility of being
implemented in the next, or upcoming, release of the software application. Whether they will be
implemented depends on numerous factors, particularly the perceived priority by the customer or
sponsoring organization, the staffing and schedule demands available, and the dependence or
effect each requirement has on other parts of the software system. In some cases, assessing the
feasibility will result in contacting the originator of the requirement for further clarification or
more information, reanalysis of the requirement, or reprioritization of how and when the
requirement will be implemented.

Establish Acceptance Criteria
Once requirements are accepted for inclusion into the next release of the application code, it is
important to begin the process of establishing acceptance criteria for verifying that the
implementation of a given requirement complies with and satisfies the specification of the
requirement. Thus, once the application has been prototyped or more formally developed, the
acceptance criteria outlined in this Requirements Phase will be incorporated into the test plan
completed in the Test Subphase.

Determine Necessary Links/Ensure Requirements Traceability
An important aspect of the Requirements Phase is establishing and maintaining a traceability
between a derived requirement and its source or origin. In many cases, requirements for ASCI
software applications may extend back through several layers or sources. In general, the
traceability between layers requires that for any what requirement in a particular layer, there must
be some why requirements in the previous layer and some how requirements in the subsequent
layer, assuming that these layers exist. For instance, from an ASCI software project’s viewpoint,
this means that for any what requirement for the software, there must be some why requirements
in the modeling/simulation and some how requirements in the project's application design. As
requirements are added or changed, it is important to maintain traceability so that requirements
sources are known.

Review and Approve Requirement Artifacts
Finally, before moving into the Development Phase, it is important to ensure that the requirement
artifacts (e.g., documented requirements, requirements specification, traceability matrix,
acceptance criteria) have been adequately reviewed and approved at the appropriate peer and/or
management level. The approved requirements should be base-lined and placed under
configuration control so that the design and implementation teams can develop a firm
development plan.



22

3.3.2 Development Phase

Table 5.  Development Phase Summary

DEVELOPMENT PHASE
Overview:
The purpose of the Development Phase is to take the output from the Requirements
Phase and iteratively perform Design, Implementation, and Test Subphase practices that
result in outputs and exit criteria that are sufficient for moving the application code into
the Release Phase of the software development lifecycle.
Inputs:

• Expert scientific software development knowledge
• Outputs from Requirements Phase
• Existing codes, including third party software that may be internal or external to

the application code team
Subphases:

DESIGN
IMPLEMENTATION

TEST
Outputs:

• Design Subphase outputs
• Implementation Subphase outputs
• Test Subphase outputs
• Test cases and results
• Evidence of reviews
• Feedback
• Configuration-controlled artifacts
• Issues

Metrics:
• See subphases of the Development Phase

The three subphases of Development take place somewhat iteratively without a strict order to the
practices involved. For instance, prototyping activities to establish the feasibility of a design
concept may commence before the entire design is complete or documented. Unit testing may be
designed into the prototype and test results presented to the design team so that the design can be
refined prior to formal implementation. The following subphases (Design, Implementation, and
Test) illustrate the typical inputs, practices, and outputs that can be expected to occur in this all-
important Development Phase.



23

3.3.2.1 Design Subphase

Table 6.  Design Subphase Summary

DEVELOPMENT PHASE

DESIGN SUBPHASE
Overview:
The purpose of the Design Subphase is to describe components in a manner that can be
implemented in software. Examples include control flow, embodied mathematical
models, data structures, class definitions, and prescribed ranges for data inputs and
outputs.
Inputs:

• Outputs from Requirements Phase
• Existing codes, including third party software

Practices:
♦ Derive the design.
♦ Communicate the design to the team.
♦ Document the design.
♦ Evaluate impact to requirements (may generate issues).
♦ Plan for testing: initiate development of test plan.
♦ Review and approve design artifacts.
Outputs:

• Derived, documented, reviewed, and approved design document
• Test plan (draft)
• Evidence of reviews
• Feedback generated from Design Subphase
• Configuration-controlled artifacts
• Issues

Metrics:
• Issues statistics

The Development Phase begins once requirements have been satisfactorily derived, documented,
reviewed, and approved. At this point the project team will begin the all-important practices
associated with designing the aspects of the software system. These design aspects include such
activities as determining the structure of the software system (its design entities and
dependencies) and designing the content of the system inputs and outputs and the user and system
interface(s). The team will also want to consider any necessary security controls, data structures,
new or additional numerical algorithms, and system architecture issues. One or more team
members may initiate a prototype of key requirements or functionality that they will bring back to
the design team to factor in results or numerical estimates before the design is complete. Another
important activity in the Design Subphase is to begin planning for various testing activities that
will be required to ultimately verify that requirements have been correctly implemented.



24

Derive the Design
With requirements from the previous phase in hand or refactored from a previous phase, the
development team will work on identifying and specifying the various components and
subsystems of the proposed application. The design may take the form of notes from engineering
notebooks prepared by various members of the team working independently or it may derive from
project meetings where ideas are shared, discussed, and analyzed. The practice of deriving the
design will likely be an iterative process based on many discussions and prototypes of various
aspects that come out of these discussions.

Communicate the Design to the Team
At some point before moving into a full-fledged implementation subphase, all members of the
project team need to be made aware of the design. The project lead or the individual who has
been responsible for gathering design notes, reviews, and other design artifacts will be
responsible for communicating the design to the entire team. This communication may take the
form of a published report, a presentation of design notes, or some combination thereof. Project
team design reviews that include customer or sponsor representatives should also be
communicated to affected members of the design team.

Document the Design
In communicating the design, some form of documentation is usually produced. However, as the
development process matures, the design should necessarily be turned into a document that can
be reviewed and approved and included as a product artifact. The design document should be
configuration controlled.

Evaluate Impact to Requirements
As the design is derived and communicated, some issues may arise that need to be refactored into
the previously identified requirements. These may be feasibility issues related to practicality or
resources necessary for accomplishing the implementation of the desired product. Such impacts
must be documented and communicated to those involved with project planning and tracking
activities.

Plan for Testing
One of the most important aspects of the Design Subphase is to initiate the development of a test
plan(s) that will be used throughout the remaining phases of development. Although the
completed test plan is not due until the Test Subphase is completed, it is crucial that the design
team begin identifying the types of general, integration, regression, software verification, and
software validation tests that will be necessary to guarantee the correctness and validity of the
application. The nature of the test plan is described in more detail in Section 3.3.2.3, which also
includes a discussion of various types of tests.

Review and Approve Design Artifacts
Finally, before moving into the Implementation Subphase, it is important to ensure that the design
artifacts (e.g., documented design, draft test plan) have been adequately reviewed and approved at
the appropriate peer and/or management level. The approved design artifacts should be base-lined
and placed under configuration control so that the implementation and test teams can inherit a
well thought-out and documented design plan.



25

3.3.2.2 Implementation Subphase

Table 7.  Implementation Subphase Summary

DEVELOPMENT PHASE

IMPLEMENTATION SUBPHASE
Overview:
The purpose of the Implementation Subphase is to transform the software design into
code.
Inputs:

• Expert scientific software development knowledge
• Outputs from Design Subphase
• Existing codes including third party software
• Equations/numerical model/algorithms
• Implementation strategies (i.e. language)
• Data strategy and model

Practices:
♦ Evaluate impact of implementation to design and requirements.
♦ Translate design into code and other software product artifacts.
♦ Communicate issues with requirements/design team and developers.
♦ Review and approve implementation artifacts.
Outputs:

• Written, reviewed and approved code source and/or executables
• Evidence of reviews
• Feedback
• Configuration-controlled artifacts
• Issues

Metrics:
• Issues statistics

Evaluate Impact of Implementation to Design and Requirements
As the implementation proceeds from the simple to the complex, the team will continually
evaluate the impact of the implementation to the design. The team will meet frequently to discuss
restructuring and integration issues. When necessary, the design will be modified or the
requirements will be renegotiated with the stockpile drivers; requirements tracing is extremely
important to ensure this.

Translate Design into Code and Other Software Product Artifacts
Design, implementation, and testing are overlapping areas in the Sandia ASCI development
environment. Implementation may take place concurrently with design. As code team members
identify distinct components or modules of the product, they may spend a few days or weeks
translating some aspect of that design into code (prototyping a concept) to determine its



26

implementation feasibility. Once the code team members have achieved some results, they will
then present these to the design team for consideration. As the cycle continues, the
implementation team will generate other product artifacts in addition to code. In most cases,
theory manuals, user documentation, unit test cases and results, interface specifications, and other
outgrowths of implementation will be generated.

Communicate Issues with Requirements/Design Team and Developers
Implementation issues will occur that must be communicated to the design team. Occasionally,
significant design changes will result and then these changes must be communicated to all
developers who are involved in coding and implementing various components of the system.

Review and Approve Implementation Artifacts
As implementation artifacts are developed and completed, they must be reviewed for
completeness and correctness. Test case results must be reviewed to determine that acceptance
criteria are met. If not, then another iteration of issues and coding will be necessary. As
documentation is prepared, it too must be reviewed. The application team must determine an
approval process that goes hand-in-hand with testing and review prior to moving the artifacts out
of the Development Phase and into the Release Phase where they will be base-lined and prepared
for distribution.



27

3.3.2.3 Test Subphase

Table 8.  Test Subphase Summary

DEVELOPMENT PHASE

TEST SUBPHASE
Overview:
The purpose of the Test Subphase is to identify defects in the software product and to
demonstrate that the software product meets its software requirements.
Inputs:

• Outputs from Implementation Subphase
• Test plan from Design Subphase

Practices:
♦ Finalize test plan.
♦ Execute test cases found in test plan.
♦ Review test case output using acceptance criteria defined in test plan.
♦ Document test case results.
♦ Retest updated software if acceptance criteria are not satisfied.
♦ Review and approve Test Subphase outputs.
Outputs:

• Developed, executed, reviewed, and approved test plan
• Developed, executed, reviewed, and approved test results
• Evidence of reviews
• Feedback
• Configuration-controlled artifacts
• Issues

Metrics:
• Issues statistics
• Code coverage statistics
• Defect statistics

Finalize Test Plan
Test plan development is initiated in the Design Subphase, and some testing is carried out in the
Implementation Subphase. Each test plan must identify the class of the software application based
on the guidelines described in Section 1.4. The plan must also identify the types of tests that will
be conducted based on the class, as well as any additional tests that are needed to provide
confidence that the software product does not contain any defects and to demonstrate that
requirements are met. Every test that will be conducted in the Test Subphase must be described
along with acceptance criteria that will be used in the review of test results. Each test must have a
specification that contains information to identify the test, test environment, test procedure, and
expected test results with acceptance criteria. The test plan must address basic areas of testing:
unit, integration, regression, system software verification, installation, and acceptance. Unit



28

testing is usually conducted during the implementation subphase, but the unit test plan and its
results are required by the end of the Test Subphase. See Testing Requirements (below) for a
complete discussion of what the test plan should include relative to each of the testing types.

Execute Test Cases
It is expected that some testing is done in the Implementation Subphase. Such outputs will be
carried forward to this subphase. For testing that has been identified in the test plan and not
performed up until now, a test subteam is responsible for executing and documenting all such test
cases.

Review Test Case Output Using Acceptance Criteria Defined in Test Plan
Results from test cases must be reviewed. In cases where unsatisfactory results are obtained,
further analysis may be required and, oftentimes, issues may be submitted that will result in the
code being reworked to correct the deficiency or oversight. This practice relies on knowledgeable
test reviewers and well-defined acceptance criteria so that objectivity can be applied in
determining whether or not the code passes the test case criteria.

Document Test Case Results
The results from all tests cases should be documented and added as artifacts to the project's
configuration repository. Such test results will form the basis for subsequent reviews or concerns
that may arise regarding verification of the software product.

Retest Updated Software if Acceptance Criteria is not Satisfied
In cases where the software code fails to meet acceptance criteria and must be reworked or sent
back to the Design and/or Implementation Subphases, it will need to be retested with subsequent
reviews against acceptance criteria. New test results will then be documented and added to the
project artifacts.

Review And Approve Test Subphase Outputs
Once the software has been successfully tested according to a prepared test plan and all
acceptance criteria satisfied, the product is ready to enter the next phase of the lifecycle, Release.
Before this phase is initiated, however, it is very important that someone on the project team
review and approve all Test Subphase outputs as many of these will be part of the distribution
package.

3.3.2.3.1 Test Requirements

The Test Subphase practices center on completing, conducting, analyzing, reconducting (as
necessary), and approving the tests that are appropriate for the size, scope, and maturity of the
project. The key to meaningful and successful test cases is highly dependent on the knowledge
and expertise of the personnel who design the test cases as well as those individuals who review
output from the test cases. In the ASCI software development environment, the testing criteria
discussed below should be applied. These testing categories are identified in Section 3.2 Software
Verification under Testing. The following discussion adds more specifics to the testing categories
introduced in that section.

General Testing
• 80% Code Statement Coverage

Evidence must be provided demonstrating that at least 80% of the software source statements
have been executed through testing. Applying an automated tool that uses a specified set of
tests (such as the regression tests) typically provides this evidence.



29

• Memory Testing
Memory testing is conducted prior to check-in to the configuration control system. It is a
white-box testing methodology used to determine that the program is properly using memory.
Memory testing is programming-language dependent; some languages do not support
memory testing. Memory validity and usage checks can provide useful information. A
memory leak can lead to a program prematurely running out of memory or incorrectly
overwriting information.

• Static Compiler Testing
Static testing provided by the compiler (for all applicable platforms) is required prior to
check-in to the configuration control system. No compiler errors are allowed. Acceptable
compiler warnings should be documented as part of the test plan.

Unit /Integration Testing
Unit module testing is conducted prior to check-in to the configuration control system. It is the
process of testing the individual units or modules of a program before they are integrated into the
software product. Integration testing involves testing part or all of the system to evaluate the
interactions among components. Specifications for the test cases must be provided, acceptance
criteria must be established, and the source code must be available.

Regression Testing
Regression testing is conducted prior to check-in to the configuration control system. It is
conducted after making a change to software (adding functionality, fixing a bug, etc.) to
demonstrate that previously tested functionality has not changed and to determine if the change
has impacted other aspects of the code. Regression tests are typically a subset of the test cases
used to demonstrate software verification.

System Software Verification Testing
This testing consists of using a method or combination of methods to ensure that required
functional features satisfy specified requirements. One or more of the following options, as
appropriate, should be included in test plans:

• Manufactured Solution Testing
In the Method of Manufactured Solutions an analytical expression, usually as simple as
possible, is substituted in the governing partial differential equations (PDEs) and the resulting
terms gathered to form a source term. This source term is then used in the code that
represents the numerical implementation of the PDEs. An array of source term storage is
needed for every grid block or element in the domain. If this array is not available, the code
must be modified accordingly. Having to modify the code being tested would be a drawback
to the method. The numerical solution is then compared with the analytical expression. By
doing a grid refinement, one can verify the expected order of the numerical method. This
comparison and verification helps to determine programming errors and numerical errors
[Roache, 1998].

• Analytical Solution Testing
This technique compares the code with an analytical solution of the mathematical equations
instantiated in the code. Analytical solutions represent simplified solutions to complex
problems. Many approximations are usually required to obtain a formulation that can be
solved analytically. However, these approximations do permit the testing of the time-



30

dependent evolution of physical phenomena, e.g., shocks and discontinuous behavior. If the
solution does not exist in the literature, it can be resource intensive to develop. Although the
solution is analytical, the solution must be translated into a numerical representation that can
introduce coding errors.

Because analytical solutions are “exact,” the discretization error of the code can be quantified
and studied. However, to obtain an analytical solution, simple geometry, boundary
conditions, initial conditions, and material models are required, and hence have limited
coverage of the code’s capability. Even for relatively simple problems, in many cases few
analytical solutions are available for 3D geometry. Analytical solutions are “exact” in that
they exactly satisfy the mathematical equations, but the form of the analytical solution is in
terms of mathematical functions that must be carefully evaluated to get accurate numerical
values. Without careful evaluation, inaccurate numerical values can corrupt the comparison
with a code.

• Code Comparison Testing
Agreement between a new code and a widely used code can contribute to confidence in the
results. It is not required that the two codes being compared be identical, but that they have
functionality in common. The basis for this methodology is the assumption that if two
independent codes produce the same result, either both codes are correct, or both codes are
incorrect in exactly the same way. If possible, code comparison testing needs to be combined
with other testing techniques that address typical mistakes with the methodology. When used
in this manner, code comparison can greatly contribute to code verification.

Installation Testing
Installation testing is required for released software on all required target platforms. This testing
seeks to confirm that the software installation on the target platform occurred correctly.
Installation tests are useful as installation routines are typically the most heavily modified part of
the product.

A subset of test cases previously developed can be used with additional tests designed specifically
for the process of installation. This type of testing typically occurs during the Release Phase,
although the installation tests can be designed, reviewed, and approved during the Test Subphase.
Typically, installation tests are delivered with the software for the end user to execute and
compare to expected results.

Installation tests must address:
• that the variety of options and combinations of options selected by the user were acceptable
• that the installation was performed on an approved hardware configuration
• that required interconnections to other programs were properly established



31

3.3.3 Release Phase

The Release Phase of the software engineering lifecycle covers practices and activities that must
be addressed when a product release is eligible for distribution and support. These activities
commence when a new software release is envisioned or when a new version of the release is
requested.

Table 9.  Release Phase Summary

RELEASE PHASE
Overview:
The purpose of the Release Phase is to manage a production version of the software
product that is distributed to customers.
Inputs:

• Outputs from Test Subphase
• Request for release
• Release distribution process (defined at organization level and tailored by each

application software team)
Practices:
♦ Receive and evaluate release request.
♦ Plan and develop release.
♦ Review and approve release.
♦ Create and distribute release.
♦ Support release, as agreed with customer.
Outputs:

• Software product includes code and other designated artifacts
• Operational documentation (may include)

• Release contents:
q User documentation, training material, theory manuals
q Service-level (maintenance) agreement
q Test cases
q Installation procedures

• Feedback
• Evidence of reviews
• Configuration-controlled artifacts
• Issues

Metrics:
• Release statistics (types of releases: primary, patch, major, minor, etc.)
• Issues statistics

Releases may be preplanned, where the features are identified in the Requirements Phase, carried
through the Development Phase, and the release is planned for and scheduled as part of the
overall product strategy. On the other hand, once an application is in production, it will be
refined, fixed, and enhanced. In this situation, new versions of the product will become eligible



32

for release and distribution. Depending on the situation, a release may take on all elements of the
product or it may include only a subset of the product elements and components. In any case,
there are several practices that must be considered and applied as the software product moves
from its development environment to the supported production environment. Project teams should
tailor and follow a release and distribution management process that is based upon an
organizational standard. Such a process should address elements described in the practice
descriptions that follow.

Receive and Evaluate Release Request
A product release request may be submitted to the project team as a natural by-product of the
Development and Design Phases. In this case, the request will include information that specifies
the version, features, platforms and operating systems, and a target release date that coincides
with the completion of the Implementation and Test Subphases. The request will also likely
include a list of customers or institutions that have been identified to receive the distribution of
the product release. A product release request may also be submitted by a new customer who
wishes to receive a distribution of an existing or planned release.

Each project team must have some method of receiving and evaluating each release request. The
process will include determining what gets released and when; what elements and/or components
of the product will be part of the resulting release distribution; how a distribution of the product
will be tested and certified for release; and finally, who will be responsible for interfacing with
the customer(s) and handling issues that may be submitted against the released product.

Plan and Develop Release
Once the release request has been evaluated and a determination made to proceed with the
request, the project team is responsible for planning the activities that must occur prior to base-
lining the necessary code and other artifacts that will be distributed. This practice will include
planning exactly what will go into the release, what resources are needed to accomplish the
distribution of the release, what the schedule will be for accomplishing the release, and what
other milestones should be identified for accomplishing the release. Such milestones can include
additional installation testing, user documentation, installation instructions, or suggested reviews
that should occur. Planning the release may take place early on in the lifecycle, but details and
modifications to the original plan are completed in this Release Phase.

Review and Approve Release
When the project team has finished all development activities and created all artifacts necessary
for the release, the team will create a baseline that will be moved into a staging area in
preparation for distribution. Further code development is deferred to the next scheduled (or
nonscheduled) release at this point. Once base-lined, a product undergoes the final steps before
being distributed and supported.

Create and Distribute Release
Once approved for release, a software product is eligible for distribution. At this point, the release
will be created in an appropriate medium. All included artifacts in the distribution baseline will be
identified, and the release will be electronically distributed or packaged for distribution and
shipped to authorized customers or requestors. Requestors may be internal customers in the same
location and on the same network or they may be external customers, located at remote sites, for
whom specialized distribution techniques have been identified.



33

Each distributed release will contain detailed release notes that provide an overall description of
the product and a running history of other releases associated with the project. In addition to code
that identifies the application, the distributed release package may include operational
documentation in the form of user documentation, training material, and theory manuals. The
package will also likely include installation procedure notes and test cases that the customer can
optionally run and compare to; in most instances, a service-level agreement will also be part of
the package.

Support Release
The service-level agreement specifies 1) the period of time of support and 2) the responsible party
in the event of a malfunction or if questions arise on any aspect of the release. This agreement
also identifies a point of contact and explains how to submit trouble tickets or issues that may
need to be filed against the application code. The project team will track who has requested and
received releases and what version of the code each customer has received and installed. That
way, in case a release needs to be withdrawn at some point in time, the project team knows
exactly who should be contacted and advised.



34

3.4 Project Management

Project management occurs throughout the entire software development lifecycle. The practices
of project management are intended to ensure that adequate funding and resources are available to
allow successful completion of deliverables and required software practices. Monitoring of
projects provides early warning signs of cost or performance issues that need to be addressed if
project milestones are to be completed successfully. The involvement of management in the
ASCI software quality program is implemented via the AQMC (ASCI Quality Management
Council).

Table 10.  Project Management Summary

PROJECT MANAGEMENT
Overview:
The purpose of Project Management is to ensure that adequate funding and resources are
available to allow successful completion of deliverables and required software practices.
Inputs:

• Implementation Plans (IPs)
• Baseline Change Proposals (BCPs)

Practices:
Project Planning

♦ Submit IP addressing project tasks annually.
Tracking and Oversight

♦ Review milestone status quarterly.
♦ Issue BCPs, if needed.
♦ Prepare performance reporting on a quarterly basis.

Risk Management
♦ Incorporate risk identification and risk mitigation into project execution using

the BCP.
Outputs:

• Updated IPs
• Updated BCPs

Metrics:
• Cost variance by month
• Schedule variance by quarter
• Completion of milestones and mileposts

3.4.1 Project Planning

Project planning includes preparing a plan that describes how the project will be performed and
managed. It typically includes a statement of work, constraints and goals, project deliverables, a
project timeline, an assessment of resources that will be needed, and the availability of identified
resources.



35

Submit IP Addressing Project Tasks Annually
Project planning begins with the ASCI Program Plan, which is updated periodically by NNSA
with input from the Tri-labs. Sandia then develops implementation plans (IPs) that are written
annually. An IP describes individual projects and identified milestones and related tasks, an
associated schedule, funding, issues, constraints, and assumptions. In formulating the IP, the
principal investigator (PI) identifies the work to be performed and prepares a cost estimate, based
on available resources, funding, and his/her experience in projecting such estimates.
Implementation Plans are approved by DOE-HQ (DP-10).

3.4.2 Tracking and Oversight

Tracking and oversight involves the tracking and reviewing of projected accomplishments and
results with respect to how they are described in the project plan. It also implies taking corrective
action as necessary based upon actual accomplishments and results. To that end, selected contents
of the IPs are documented and maintained in a Web-based system that

• archives the Work Breakdown Structure (WBS)
• automates data collection for reporting purposes
• provides reporting capabilities
• issues monthly budget updates regarding cost expenditures to PIs

Review Milestone Status Quarterly
Milestones are reviewed and modified on a quarterly basis via a Web-based system that identifies
the milestones and their associated due dates.

Issue Baseline Change Proposals (BCPs), If Needed
Whenever changes to the project scope, cost, or schedule are anticipated, the PI, using the Web-
based system, must submit a Baseline Change Proposal (BCP). The BCP includes a change
description, scope impact, schedule impact, cost impact, justification for the change, and impact
of nonapproval. The ASCI Applications program element lead as well as the line manager
responsible for the execution of the work must approve the BCP.

Prepare Performance Reports on a Quarterly Basis
For every WBS element, there is at least one milestone that has been identified. Performance
reports are prepared on a quarterly basis via a Web-based system that describes the work
performed during the quarter relative to meeting the milestone(s). In addition to the brief
description of the work performed, the PI also can include supporting documents that were
prepared during the quarter. Performance reporting is not, however, limited to this system. Project
managers perform informal reviews during the year, which can include one-on-one sessions with
the PIs or review sessions in group settings. In addition to these performance reports/sessions, a
limited number of external reviews (one or two per year) are conducted on a major milepost
and/or major milestone. This forum also provides an opportunity to assign status to the work that
has been performed.

3.4.3 Risk Management

Risk management involves identifying, addressing, and mitigating sources of risk before they
become threats to the successful completion of a project.

Incorporate Risk Identification and Risk Mitigation into Project Execution
Risk management is incorporated into the IP and the quarterly report. Risks are identified and
described in the “Issues and Concerns” section of the quarterly report. Any item that is identified



36

in this section of the quarterly report is flagged for further review by management to determine
the impact on milestone completion. Coupled with the quarterly reporting Web-site is a BCP. The
BCP allows mitigating actions to be taken before risks become a threat to successful completion
of a project.



37

3.5 Support Elements

Table 11.  Support Elements Summary

SUPPORT ELEMENTS
Overview:
The purpose of Support Elements is to help monitor and correct project plans against
performance, conduct reviews of artifact content, train software developers, and
document and preserve the results of the project.
Inputs:

• Software requirements
• Project planning artifacts
• Code artifacts, including those relevant to third party software

Practices:
Requirements Management

♦ Conduct requirements tracing.
♦ Determine requirements ownership and status tracking.

Configuration Management
♦ Conduct issue tracking of software product artifacts, including requirements.
♦ Perform version control of software product artifacts, including requirements.
♦ Perform release and distribution management.
♦ Engage in ASCI records management.

Third Party Software
♦ Accept third party software and libraries into the application code domain.
♦ Install, integrate, and control the accepted third party software.

Training (need-based)
♦ Evaluate training needs on activities necessary for producing software artifacts,

use of software tools, needs for understanding of software processes, needs for
software verification process and techniques.

♦ Train appropriate project members in use of project management and project
tracking and oversight processes.

♦ Train staff on activities necessary for producing software artifacts.
♦ Train staff on how to use software tools.
♦ Train staff on software processes and their implementation.
♦ Train staff on software verification process and techniques.

Outputs:
• Configuration-controlled artifacts
• Issues

Metrics:
• Issues statistics

Support elements of the software development lifecycle include requirements management,
configuration management, third party software management, and training. These practices are



38

intended for managing the work of building a software system. They help monitor and correct
project plans against performance, conduct review of artifact content, train software engineers,
and document and preserve the results of the project, which are its artifacts.

3.5.1 Requirements Management

Requirements engineering consists of two significant areas:
• requirements gathering and derivation, which is part of the software engineering lifecycle

(Section 3.3.1).
• requirements management. This document treats the requirements management practices

as Support Elements.

Requirements management includes practices for requirements tracing, requirements ownership
and status tracking, requirements version control, and requirements change control. Version
control and change control of requirements are treated as configuration management of
requirements (discussed in Section 3.5.2).

Conduct Requirements Tracing
Requirements tracing is keeping track of the original driver for a particular requirement, as well
as the corresponding specifications, design issues, and implementation artifacts that reflect that
requirement. Tracing is important because when a change to a particular requirement is effected,
it is essential that the change be applied against all other product artifacts that reflect any part or
all of the requirement.

Determine Requirements Ownership and Status Tracking
Requirements ownership and status tracking imply a knowledge of where a particular requirement
originated, who or what component is responsible for implementing it, and who is responsible for
managing any associated changes against that requirement over the lifetime of the software
product. As individuals come and go from the project and as modules are added or deleted or
rearranged, it is extremely important to ensure that requirements are not overlooked or
abandoned. It is also very important to know where and when the requirement was implemented
in the code and how it was verified.

The process for managing requirements is critical to ensure that ASCI codes share a common
understanding from the various viewpoints at any point in time. Requirements management will
also ensure that projects are managed to customer requirements.

3.5.2 Configuration Management

Configuration management includes identifying the configuration items in a system, controlling
the change and release of those items throughout the lifecycle, recording and reporting the status
of the items and associated changes, and managing the completeness and traceability of the items.
In short, a configuration management system should provide a stable environment for iterative
development and production activities. Required configuration management practices for
controlling and managing software artifacts are

• issue tracking
• version control
• release and distribution management
• records management



39

Conduct Issue Tracking of Software Product Artifacts
Issue tracking is the process of recording and tracking all changes that occur to any product
artifacts throughout their lifetime. Issue tracking allows the submittal of enhancement requests,
problem and defect reports, and inquiries. Most issue tracking systems provide a capability of
tying the requested change to a particular code module (or modules) and controlling who can
work on the change request at particular status points in a module’s existence.

Perform Version Control of Software Product Artifacts
Version control of software product artifacts implies the availability of a controlled, shared
project repository (library) where artifacts are stored and accessed. Each project needs to follow a
documented process describing how to identify project artifacts that will be kept in the repository,
how to access and version those artifacts, how to identify when product baselines will be created
and how they can be changed and by whom, and when software is ready to be released and
distributed to internal or external customers.

Perform Release and Distribution Management
Release and distribution management involves determining what will go into a release, when it is
ready to be distributed (and to whom), and how a given release will be supported and tracked
throughout its lifetime. Section 3.3.3 describes the entire release and distribution management
practices in more detail. Configuration management is used to control how project artifacts will
be base-lined and preserved, to identify to whom and when releases are distributed, and to be able
to recreate or distribute a given release.

Engage in ASCI Records Management
Records management is a corporate requirement. It involves the planning, organizing, training,
and other managerial activities related to the creation, maintenance, use, and disposition of
records. The Sandia ASCI Records Management Program strives to meet its records management
needs by fostering an understanding of the importance of recorded information generated or
received by Sandia. This program also strives to teach Sandians their responsibility in the
creation, use, maintenance, and disposition of records; to provide training and support for the
implementation of best business practices with regards to Sandia ASCI records; and to
incorporate federal requirements into standardized tools for information management at Sandia.

3.5.3 Third Party Software

Third party software is an application or library used or required by a Sandia ASCI code
application; however, ASCI application teams do not normally maintain this particular software.
Many of these third party software sets are developed at Sandia, while other sets are developed by
other government labs, by commercial vendors, and by university partners.

Place Accepted Third Party Software into Application Code Domain
Third party software might serve as an input into several of the Software Engineering phases
described in Section 3.3. Sandia manages the ongoing development and maintenance of third
party software once it enters the application code domain. These third party software packages
are required to pass a quality assurance procedure and then are configuration-controlled. If third
party software is modified by the ASCI application team, then either the team assumes primary
responsibility for these changes (in which case it is no longer third party), or such changes are
coordinated with the third-party supplying organization for inclusion in future updates and
releases. Third party software must be evaluated on a case by case basis to determine its
appropriate class (Table 2, Section 1.4)



40

Install, Integrate, and Control the Accepted Third Party Software
Besides furnishing artifacts that verify the integrity of the supplied third party code, the supplying
organization is expected to include instructions, code, test cases, and user information that allows
the Sandia developer to successfully install, integrate, and appropriately control the code. Each
code team should have a plan in place that describes the criteria for accepting third party software
into its domain. Such software and its associated artifacts, once accepted, should be managed
according to a common software configuration management process.

3.5.4 Training

Training addresses the importance of the “human asset” in the ASCI application code
development process. The staff involved in the practices of this document must be highly trained
and educated in scientific software development, algorithms, and/or computer science. Specific
project and tool training related to software development, software verification, and project
management will be planned and tailored in an individualized, need-based implementation.
Training in the following areas will be conducted as project needs dictate:

a. project management and project tracking and oversight processes
b. activities necessary for producing software artifacts
c. use of software tools
d. software processes and their implementation
e. software verification process and techniques

As training needs evolve, the code teams will follow a graded approach in determining the
specific types of training classes or opportunities that are needed for their environments. For
example, self-directed learning exercises using Web-based tools can be a method for providing
training. Vendors offer extensive classes in the use of support tools. Many classes are offered by
Corporate Training in classroom format or video downloads, covering current software
engineering practices.



41

4 Assessment Tool & Gap Analysis

This section includes an assessment tool based on the practices and suggested outputs of this
document. Periodically, the AQMC will review this assessment tool and modify it as necessary.
The assessment tool provided by the AQMC will list practices and the current organizational goal
level for each of the practices. The assessment tool is a process improvement mechanism that is
used to

• set measurable goals for software engineering practices and outputs
• evaluate the current state of software engineering practices
• compare the current state of software engineering practices to a desired state (perform a

gap analysis)
• gather information on an application code team’s interpretation of compliance
• compile an overall consistent organizational evaluation of software engineering practices

The results of the assessment should aid management in resource allocation, risk identification,
and priority identification.

The assessment tool organizes practices as they are introduced and discussed in Section 3.
Software Verification is not included as a stand-alone category in the tool because the primary
components of software verification, reviews and testing, are folded into various practices under
the phases of Software Engineering. Support Elements are addressed by practices of requirements
management, configuration management, and various training activities pertaining to lifecycle
support.

The assessment tool will be deployed with the following strategy:
• The AQMC will initially set the values in the tool based on the consensus of the council

members.
• Code teams will do a self-assessment and gap analysis, which establishes implementation

priorities for the individual teams.
• An independent assessment of the code teams will follow the self-assessments.
• The AQMC will revise the values in the tool approximately one year after the assessment

report is accepted.

The assessment tool includes a column for evaluation of the application code team’s practices by
an independent assessment team. This team will be appointed, as needed, by the AQMC for
calibration of evaluation results at the Sandia ASCI-organizational level. The AQMC will direct
application code teams to use this tool periodically to compare their current practices to the
Sandia ASCI Code Development Practices. This will help the teams to determine those areas in
which they are making good progress or, alternatively, in which they may need to focus
improvement efforts. In addition to identifying areas that are appropriate for increased
improvement efforts, the application code teams can observe how they are improving over time
by comparing previous assessments to current assessments.

The assessment tool will provide the AQMC with a mechanism for identifying best practices that
can be communicated and leveraged among application code teams. For instance, if a software
development team chooses to prototype a practice, the team can do so without adding it to the
assessment tool.

Note: This tool is designed to identify current status and provide management with information to
allocate resources and is not intended as a goodness evaluation, certification, or verification
exercise.



42

Instructions for Completing Assessment Checklist
The details of the activities that compose each practice are not listed separately in the Assessment
Checklist. Listing all of the required test types that should be included in the test plan and then
subsequently executed would result in a checklist that is unwieldy. However, if the AQMC
recommendation for a particular practice, such as “Finalize test plan,” is 3, then the expectation is
that all activities addressed in the description of that practice will be carried out in order for a
code team to achieve a value of 3 in its self-assessment.

Definitions of the columns in the Assessment Checklist are provided below. Following the
definitions is an example of an Assessment Checklist that has been filled in for demonstration
purposes only. A blank checklist is provided in Appendix C.

(1) Application Name/Class/Assessment Date
This column includes the name of the ASCI application code, the designated class of the
code, and the date of the assessment.

(2) AQMC Requires
The values in this column are determined by the AQMC and modified as determined by the
council. A value of 3 indicates that the council requires that application code teams follow
this practice by fully implementing it.

In general, the council will raise the bar (higher value) for a particular practice when it
reaches consensus with application code teams that the practice adds value to the process
and is cost effective. The council will remove the practice or lower the bar (lesser value) for
a practice if it deems that the practice is not cost effective and/or it adds little or no value.

(3) (Application) Code Team Evaluation
This is the column the code evaluation team fills in to determine where they are in terms of
performing or implementing all recommended practices. A code team will select a value of
0–3 or NA based on the criteria specified below.

3 The application code team has fully implemented this practice. This is the most
difficult value to achieve. This value indicates that the practice is at the
maintenance stage. Evidence exists that the practice is integrated into the code
development process. Concurrence by the assessment team is needed for the
practice to be officially recognized as fully implemented. To be at the fully
implemented level, a documented process for the practice needs to be in place,
and the team needs to be following this documented process.

2 The application code team has partially implemented this practice. Some
evidence exists that the practice has started. Resources for the fulfillment of this
practice have been identified, but the implementation is not complete. For
example, a draft of the process for conducting the practice exists, or a completed
documented process exists with most of the team (but not all) complying with the
process. Additional resources most likely will be needed to raise this practice to
fully implemented.

1 The application code team has proposed the implementation of this practice but
has little or no evidence yet to support implementation. At this level, it is typical
that resources have not yet been identified and allocated for fulfillment of the
practice. Activities and resources for this practice are being planned.



43

0 The application code team has not yet addressed the implementation of this
practice.

NA The application code team determines this practice is not applicable to its code
development environment. A value of NA must be accompanied by an
explanation from the code team describing why the practice will not be followed.

Note: Specific guidelines for selecting assessment values will be provided by the AQMC for
each entry in the Assessment Checklist.

(4) Assessment Team Evaluation
As needed, the AQMC will appoint a core assessment team to review the current state of
practices performed by each team. The AQMC will use the same scale as the application
code team (see (3) above).

(5) Comments/Evidence
This column is intended to record comments about an application code team’s particular
implementation of a given practice or why that practice is not applicable. The column will
also be used to record evidence of implementation of that practice, especially to show full or
partial implementation. Either the application code team or the assessment team may enter
information in this column. The author of the comment should be clearly identifiable.

(6) Completed By
This line indicates the person (code team, assessment team) who completed the assessment
checklist. The person who signs this section should print their name, date the checklist, and
add their signature.

Application code teams should use this tool annually to determine how closely they are adhering
to the Sandia ASCI Code Development Practices. In addition to highlighting areas that are
appropriate for increased improvement efforts, the application code teams can observe how they
are improving by comparing the scores of various practices from one assessment period to the
next.



44

Sample Assessment Checklist for ASCI Apps Software
Development Areas

(1) Application Name:
          MADRE

Application Class:  A
Assessment Date:

               September 27, 2001

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

Practice

3=Fully
2=Partially
1=Plan to

3=Fully
2=Partially
1=Plan to
0=Not
addressed
NA - not
applicable

3=Fully
2=Partially
1=Plan to
0=Not
addressed
NA - not
applicable

Use this area to explain why NA
is selected as a response to
columns (3) or (4) and to
demonstrate evidence for other
responses as needed.

Software Engineering
1.  Requirements Phase
1a.  Derive software requirements.

Section 3.3.1

3 3 3 Requirements to be
implemented in software are
derived based on stockpile
drivers.

1b.  Document software
requirements.

Section 3.3.1

2 3 3 Requirements for released
version 1.0 are documented in
requirement’s document
V1.0.

1c.  Assess feasibility, if applicable,
and generate estimates for
budget, resources, etc.

Section 3.3.1

1 1 1 Team recognizes the value
in this practice; however,
schedule does not always
permit analysis at
Requirements Phase. Often
defer this until
Implementation Subphase.

1d.  Establish acceptance criteria
based on requirements.

Section 3.3.1

1 2 2 A process for establishing
acceptance criteria exists;
criteria is identified, but not
all areas of process are
being addressed.

1e.  Determine necessary links to
other layers of requirements,
code, and tests.

Section 3.3.1

1 2 2 This practice is part of the
documented MADRE RM
process V1.5.

1f.  Ensure requirements traceability
to other product artifacts
throughout subsequent software
phases.

Section 3.3.1

1 2 2 This practice is part of the
documented MADRE RM
process V1.5.

1g.  Review and approve
requirements artifacts.

Section 3.3.1

1 1 1 Evidence of technical,
quality, and management
reviews does not exist.



45

(1) Application Name:
          MADRE

Application Class:  A
Assessment Date:

               September 27, 2001

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

2.  Development: Design Subphase
2a.  Derive the design.

Section 3.3.2.1

2 1 1 Not formally done at this
time due to schedule
constraints.

2b.  Communicate the design to the
team.

Section 3.3.2.1

3 3 3 Periodic meetings held;
email sent out on regular
basis.

2c.  Document the design.

Section 3.3.2.1

1 N/A 1 Small code team,
application team does not
see value in this.
Assessment (A) team –
needed to support release of
code.

2d.  Evaluate impact to requirements.

Section 3.3.2.1

1 0 0 Not planning to evaluate
impact; if management says
“do,” code team will design
and implement. A-team –
need to evaluate if design
impacts derived
requirements (not based on
stockpile driver). This
practice is needed to keep
consistency between
requirements and design.

2e.  Plan for testing: initiate
development of test plan.

Section 3.3.2.1

1 3 2 Testing is informally
discussed.

2f.  Review and approve design
artifacts.

Section 3.3.2.1

1 2 2 Reviews are performed
when design artifacts are
created; however, creation
of artifacts sporadic.

3.  Development: Implementation
Subphase

3a.  Evaluate impact of
implementation to design and
requirements.

Section 3.3.2.2

1 1 1 Feedback of issues into
previous phases not yet
formalized.

3b.  Translate design into code and
other software product artifacts.

Section 3.3.2.2

3 3 2 Code is being produced;
however, there is little
evidence that
implementation represents
design.

3c.  Communicate issues with
requirements/design team and
developers.

Section 3.3.2.2

3 3 3 Team communicates via
periodic meetings, group
email, etc.



46

(1) Application Name:
          MADRE

Application Class:  A
Assessment Date:

               September 27, 2001

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

3d.  Review and approve
implementation artifacts.

Section 3.3.2.2

1 1 1 No evidence that review of
implementation artifacts
was occurring.

4.  Development: Test Subphase
4a.  Finalize test plan.

Section 3.3.2.3
1 2 2 General, unit, and

regression testing are
included in test plan. Unit
testing not being done at
this time. Installation plan is
not complete.

4b.  Execute test cases found in test
plan.

Section 3.3.2.3

2 2 2 All required test cases not
always executed prior to
check-in to configuration
system.

4c.  Review test case output using
acceptance criteria defined in test
plan.

Section 3.3.2.3

3 2 2 Not done in all cases.

4d.  Document test case results.
Section 3.3.2.3

1 1 1 Team sees value in test
cases being a controlled
artifact; however, resources
to do this not available.

4e.  Retest updated software if
acceptance criteria is not
satisfied.

Section 3.3.2.3

2 1 1 Retesting is not consistently
carried out.

4f.  Review and approve Test
Subphase outputs.

Section 3.3.2.3

1 2 2 Informal reviews occurring.

5.  Release Phase
5a.  Receive and evaluate release

request.
Section 3.3.3

2 2 2 Process in place—not
consistently followed.

5b.  Plan and develop release.
Section 3.3.3

2 2 2 Process not consistently
followed.

5c.  Review and approve release.

Section 3.3.3

3 2 1 Found evidence that
products have been released
without approval.

5d.  Create and distribute release.

Section 3.3.3

3 2 2 Releases that are
successfully created are
distributed. Some releases
not distributed to all
specified customers.



47

(1) Application Name:
          MADRE

Application Class:  A
Assessment Date:

               September 27, 2001

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

5e.  Support release, as agreed with
customer.

Section 3.3.3

1 N/A N/A No agreement to support
release in place.

Project Management
6.  Project Planning
6a.  Submit IP addressing project

tasks annually.
Section 3.4.1

3 3 3 IP for FY01 submitted and
current.

7.  Tracking and Oversight

7a.  Review milestone status
quarterly.

Section 3.4.2

3 3 3 FY01 IP reviewed Q1 and
Q2.

7b.  Issue Baseline Change Proposals
(BCPs), if needed.

Section 3.4.2

3 3 2 Need for BCP exists;
however, changes have not
been implemented.

7c.  Prepare performance reports on a
quarterly basis.

Section 3.4.2

3 3 3 Quarterly performance
reports exist and are
complete.

8.  Risk Management
8a.  Incorporate risk identification

and risk mitigation into project
execution using the BCP.

Section 3.4.3

2 2 2 BCP indicates dependence
on another project that is 2
months behind schedule.

Support Elements
9.  Requirements Management
9a.  Conduct requirements tracing.

Section 3.5.1
1 2 2 The Req. Mgmt. Process is

written and is ready to be
implemented using the
DOORS tool.

9b.  Determine requirements
ownership and status tracking.

Section 3.5.1

1 2 2 The Req. Mgmt. Process is
written and is ready to be
implemented using the
DOORS tool.

10.  Configuration Management
10a. Conduct issue tracking of

software product artifacts,
including requirements.

Section 3.5.2

3 3 2 An issues tracking tool is in
place; however, it is not
being consistently used by
team members to capture
issues.



48

(1) Application Name:
          MADRE

Application Class:  A
Assessment Date:

               September 27, 2001

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

10b. Perform version control of
software product artifacts,
including requirements.

Section 3.5.2

3 2 2 Code and user
documentation is version
controlled but other product
artifacts are not stored in
repository as defined by
code team implementation
plan.

10c. Perform release and distribution
management.

Section 3.5.2

3 2 2 The process for this is
written but has not yet been
completely implemented.

10d. Engage in ASCI records
management.

Section 3.5.2

1 1 1 Still in planning stage.

11.  Third Party Software
11a. Accept third party software and

libraries into the application
code domain.

Section 3.5.3

3 2 2 Third party software plan is
implemented and followed.

11b. Install, integrate, & control the
accepted third party software.

Section 3.5.3

3 2 2 Third party software plan is
implemented and followed.

12. Training
12a. Train appropriate project members

in use of project management and
project tracking and oversight
processes.

Section 3.5.4

2 NA NA Project management is in
full compliance with
organization requirements
and has necessary skills.
Training not needed at this
time.

12b. Train staff on activities necessary
for producing software artifacts.

Section 3.5.4

1 1 1 Team recognizes value of
this practice; however,
funding and resources not
available for providing team
with tools to produce
artifacts consistently or to
train members on use of
tools.

12c. Train staff on use of software
tools.

Section 3.5.4

2 3 2 Some staff not using issue
tracking tool; may be a need
for training.

12d. Train staff on software processes
and their implementation.

Section 3.5.4

1 2 2 Plans in place to train team.
Insufficient resources to
complete.



49

(1) Application Name:
          MADRE

Application Class:  A
Assessment Date:

               September 27, 2001

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

12e. Train staff on software
verification process and
techniques.

Section 3.5.4

1 1 2 Team is very cognizant of
verification methods for
their application. Training
not needed at this time.

Total Number of Areas 12
Total Number of
Practices

46

(6) Completed By:
(print name and date)
(signature)



50

References

Since this document is an extension to the ASCI Program Software Quality Engineering: Goals,
Principles, and Guidelines, the authors are assuming the references cited in the GP&G are also
valid for this document. Only when referenced directly is a work denoted in the list that follows.

Required. The following are upper-tier documents that specify quality requirements for this site-
specific deployment document:

Hodges, A., G. Froelich, D. Peercy, M. Pilch, J. Meza, M. Peterson, J. LaGrange, L. Cox, K.
Koch, N. Storch, C. Nitta, and E. Dube, Department of Energy, ASCI Program Software Quality
Engineering: Goals, Principles, and Guidelines, DOE/DP/ASC-SQE-2000PFDRFT-VERS2,
Albuquerque, NM, February 2001.

Department of Energy, DOE/AL Quality Criteria (QC-1), Revision 9, February 5, 1998.
Available at http://prp.lanl.gov:8686/.

Guidance. The following are documents that provide additional information that is useful in
developing and implementing Sandia ASCI V&V practices:

Kan, S. H. Metrics and Models in Software Quality Engineering. Reading, MA: Addison-Wesley
Longman, Inc., 1997.

Myers, Glenford J. The Art of Software Testing. New York: John Wiley and Sons, 1979.

Roache, Patrick J. Verification and Validation in Computational Science and Engineering.
Albuquerque: Hermosa Publishers, 1998.

Pilch, M., T. Trucano, J. Moya, G. Froehlich, A. Hodges, and D. Peercy. Guidelines for Sandia
ASCI Verification and Validation Plans - Content and Format: Version 2.0, SAND2000-3101.
Albuquerque: Sandia National Laboratories, January 2001.

Pilch, M., T. Trucano, D. Peercy, A. Hodges, E. Young, and J. Moya. Peer Review Process for
the Sandia ASCI V&V Program: Version 1.0, SAND2000-3099, Albuquerque: Sandia National
Laboratories, January 2001.

Harris, R., D. Cuyler, J. Abbot, et al. SPE Process Definition, Established by the Software
Product Engineering Technical Working Group Organization 9500, Draft. Albuquerque Sandia
National Laboratories, March 2001. Available at http://wfsprod01.sandia.gov/, then search by
title = “SPE Process”, or use Advanced search and Document ID = WFS003551.



51

Appendix A: Glossary and Acronyms

Glossary

acceptance criteria   The defined value, or range of values (usually quantitative), expected from
a test case execution to demonstrate fulfillment of software requirements.

artifact   A deliverable or work product that is the output of some phase of the software
development lifecycle. A configuration-controlled artifact is an artifact that is stored in a
corporate repository (library) and changes to it are controlled via reported issues.

configuration control   An element of configuration management, consisting of the evaluation,
coordination, approval or disapproval, and implementation of changes to configuration artifacts.

derived requirements    Those code requirements that result from analyzing and refining the
software requirements and determining what will actually be coded.

feedback   Information from one phase of the software lifecycle that is fed back to one or more
previous phases. The purpose of feedback is to provide an iterative loop from one phase or sub-
phase to another and to establish a mechanism for continuous improvement.

issue   A point of concern, a problem, or a comment that is raised in regard to a practice of a
software lifecycle phase. The issue is a form of feedback and will usually be specific to an artifact
suggesting rework, improvement, or enhancement.

lifecycle development   A model for software development that consists of phases and ensures
documentation of technical adequacy throughout the lifetime of software from conceptualization
through retirement.

release   A snapshot in time of a software product available for distribution. Typically includes
software as source or executable.

reviewer   An independent person (someone who did not produce the work or item being
reviewed) qualified to perform a review.

review   A quality assurance activity that establishes confidence in codes and ensures software
verification. Types of reviews are as follows:

• management - An evaluation performed to verify that commitments (for the current
phase) have been satisfied.

• quality - An evaluation performed to verify compliance with process and artifact
requirements.

• technical - An evaluation to determine if the content of the item submitted for review
conforms to technical requirements.

software engineering   The activities that an organization consistently employs to ensure that it
produces correct and consistent software products effectively and efficiently.

software process   A set of activities, methods, and practices for developing and maintaining a
software product and its associated artifacts.



52

software process management   The activities of monitoring, evaluating, and improving the
software process or processes.

software product   One or more artifacts, usually including code, given to the customer.

software quality   The development and description of software quality policies, goals, metrics,
assessment means, and assurance plans.

software quality management   The software quality definition activities, followed by the
appraisal of current quality practices against the organization’s quality assurance plan, plus the
development of organizational support for software quality improvement plans.

software requirements   The subset of the system requirements specifically designated to be
implemented in software.

software verification   The process of determining whether the released software product
complies with specified requirements (software requirements).

support  elements    The practices that the organization performs aimed more at managing the
work of building a software system rather than the actual building of the system.

validation   The process of evaluating the mathematical formulation to ensure that it adequately
describes the problem of interest, i.e., that the computer simulation adequately represents the real
world.  [Outside the scope of this deployment document.]

verification   The process of determining whether or not the mathematical formulation is solved
correctly, i.e., whether the computer simulation correctly represents the conceptual model and its
solution. When the numerical model forms the basis for the software requirements, verification is
equivalent to software validation.



53

Acronyms

AL Albuquerque Office (of DOE)
AQMC ASCI Quality Management Council
ASCI Accelerated Strategic Computing Initiative
BCP Baseline Change Proposal
DOE Department of Energy
DP Defense Programs
DSW Directed Stockpile Work
GP&G ASCI Software Quality Engineering: Goals, Principles, and Guidelines
HQ Headquarters
IP Implementation Plan
NNSA National Nuclear Security Agency
PDE partial differential equation
PI principal investigator
QC-1 DOE/AL Quality Criteria (QC-1)
R&D research and development
Sandia Sandia National Laboratories
SQE software quality engineering
V&V Verification and Validation
WBS Work Breakdown Structure



54

Appendix B: Mapping and Tailoring Methods

The tables in this appendix provide the evidence of compliance of this document with the GP&G.
Documents that were consulted for the compilation of the GP&G (Software Standards, Modeling
and Simulation Standards, Nuclear Facilities Standards, Customer Expectations Standards, etc.)
are not mapped directly from this document, but are mapped from this document through the
GP&G. The GP&G is the mechanism that passes along appropriate requirements from these
various standards to this deployment document.

Table 12 provides the mapping from the figure on page 4 of the GP&G (column 1) to the
corresponding practices in this deployment document (column 2). This table summarizes the site-
specific tailoring and grading performed for this deployment document.

Table 12.  Mapping of Key Elements to Practices

Goals, Principles, and
Guidelines (Figure Pg. 4)

Sandia National Laboratories
ASCI Applications Software Quality Engineering Practices

Guidelines Activities
Software Verification Mapping / Tailoring Comments

Unit Testing

Regression Testing

Type of white-box testing. Section 3.2 and Section 3.3.2.3.

The GP&G defines this as the “activity of regularly building the code…”
Section 3.3.2.2, Implementation Subphase.   "… and executing a series of
tests designed to verify that the code works as expected for all
computational platforms supported." Demonstrating that code works as
expected or complies with requirements and acceptance criteria is the
purpose of software verification. Software verification is achieved through
the fulfillment of the lifecycle. Section 3.2.

Analytic Comparisons Acceptable method for comparing results of test case execution.  Section
3.3.2.3.1.

Code Comparisons Accomplished by code reviews. Section 3.2 and Section 3.3.2.3.1.
User Acceptance Testing Demonstrating that the application software meets user needs. User needs

are captured in the Requirements Phase (Table 4) and carried through
subsequent phases (Development and Release). Requirements are tested in
Test Subphase.

Training Software verification training is a component of Training Support. Section
3.5.4.

Software Engineering Mapping / Tailoring Comments
Lifecycle Management Lifecycle Management is a component of Project Management, Section

3.4, Table 10 and associated practice discussion.
Configuration
Management

Section 3.5, Table 11 and associated practices discussion.

Measurement Metrics Section 3.4, Table 10 and associated practices discussion.
Reviews/Assessments Section 3.4, Table 10 and associated practices discussion.
Process Improvement Glossary “software process management” and Section 2, AQMC.
Training Software engineering  training is a component of Training Support, Section

3.5.4.
Project Management Mapping / Tailoring Comments

Risk Management Risk Management is a component of Project Management. Section 3.4,
Table 10 and associated practice discussion in Section 3.4.3.

Requirements Management Section 3.5, Table 11 and associated practices discussion.
Project Planning Section 3.4, Table 10 and associated practices discussion.



55

Goals, Principles, and
Guidelines (Figure Pg. 4)

Sandia National Laboratories
ASCI Applications Software Quality Engineering Practices

Tracking and Oversight Section 3.4, Table 10 and associated practices discussion
Process Management Glossary “software process management' and Section 2, AQMC.
Training Project Management training is a component of Training Support, Section

3.5.4.

Tables 13, 14, and 15 provide a mapping from the GP&G—for Software Verification, Software
Engineering, and Project Management—as represented by Key Elements to this deployment
document.

Table 13.  Mapping of Deployment Practices to Key Elements of Software Verification

Stating Goals, Identifying Principles, and Selecting
Guidelines for SQE (GP&G, Pg. 7)

Sandia National Laboratories ASCI
Applications Software Quality

Engineering Practices
Guideline

Area
Activities Key Elements Practices

Software
Verification

Mapping
Comments

Technical Reviews Technical Soundness
Static Analysis

Technical review, Glossary and Section,
3.2 (under Reviews)

Unit Testing
Regression Testing

Traceable, repeatable
component test

Building the Code

Executing tests

Feature-based test
suite for multiple
platforms

White-box testing technique, Section
3.2, and Table 8.

Section 3.3.2.3, Table 8, Test Subphase
outputs. All artifacts identified for
configuration control, such as test cases,
will be “repeatable.” Traceability is
maintained throughout entire lifecycle,
including test subphase.

Section 3.3.2.2, Table 7, Implementation
Subphase.

Section 3.3.2.3, Table 8, Test Subphase.

This is an example of a black-box
requirement-based test. The purpose of
the Test Subphase is to develop and
execute test cases that demonstrate that a
given software product meets software
requirements. This is application
dependent; application codes with
requirements to run on multiple
platforms will have tests associated with
this requirement.

Comparison
Techniques

Analytic solutions
Other codes results

Acceptable methods for evaluation of
test results. Test Subphase Table 8 and
associated discussion, Section 3.3.2.3.1.



56

User Acceptance
Testing

Applicability
Evaluation

Usability Evaluation

Code Confidence
Results Credibility

The GP&G defines User Acceptance.
testing as “ the activity of determining if
the work products satisfy the needs of
the intended user’s”. The demonstration
that any type of requirement has been
met is an output of the Development
Phase and the purpose of Software
Verification.  Section 3.2, Figure 2 and
Table 3. Software requirements include
“user” requirements—the requirements
the software is to satisfy. These will then
be “evaluated” by review of test cases
execution.

Any “usability” requirements will be
captured as appropriate in software
requirements.  These will then be
“evaluated” by review of test cases
execution. The fulfillment of any type of
requirement.  Section 3.2, Software
Verification.

Code confidence and results credibility
are goals, which map to principles, then
guidelines. This deployment document
meets goals by mapping principles to
guidelines.

Training Verification methods
and techniques

Section 3.5.4, Training.



57

Table 14.  Mapping of Deployment Practices to Key Elements of Software Engineering

Stating Goals, Identifying Principles, and Selecting
Guidelines for SQE (GP&G Pg. 7)

Sandia National Laboratories ASCI
Applications Software Quality

Engineering Practices
Guideline

Area
Activities Key Elements Practices

Software
Engineering

Mapping
Comments

Life-Cycle
Management

Time-based work flow

Requirements, design,
construction, test, support
activities

Glossary, Figure 3 and associated
discussion.  Section 3.3, Tables 4–9.

Figure 3, Section 3.3.1, Requirements
Phase, Section 3.3.2.1, Design
Subphase; Section 3.3.2.2,
Implementation Subphase; Section
3.3.2.3, Test Subphase, and Section 3.5,
Support Elements.

Configuration
Management

Version Management
Issue Tracking

Release Management

Section 3.5.2, Configuration
Management and Section 3.3, Software
Engineering (introductory discussion).
Section 3.3.3, Release Phase

Measurements
and Metrics

Software Products
Software Process

Section 4, Assessment Tool.

Reviews and
Assessments

Management Reviews
Technical Reviews

Glossary and Section 3.3, each
lifecycle phase.

Process
Improvements

Engineering Process
Baseline
Identified Improvements
Improvement
Implementation

Section 4, Assessment Tool.
Section 3.5.2, Configuration
Management.
Section 3.5.2, Issue Tracking practice.

Training Software practice methods
and techniques

Section 3.5.4, Training.

Table 15.  Mapping of Deployment Practices to Key Elements of Project Management

Project
Management

Mapping
Comments

Risk
Management

Risk Assessment
Risk Control

The GP&G defines risk management as
“The activity of identifying, addressing,
and mitigating sources of risk before
they become threats to successful
completion of a project.” Section 3.4.3,
Risk Management.

Requirements
Management

Gathering, documenting,
verifying, managing change
to requirements

Section 3.5.1, Requirements
Management and
Section 3.3.1, Requirements Phase.

Project Planning Statement of Work
Constraints and Goals
Implementation Plan
Resource Assessment

Section 3.4.1, Project Planning.



58

Project
Management

Mapping
Comments

Tracking and
Oversight

Tracking and
Oversight

Actual results vs. planned
results

Corrective Action

Section 3.4.2, Tracking and Oversight.
Table 4, Assess feasibility.

Section 3.4, Project Management.

Process
Management

Process documentation &
plans. Tech. Improvement
Improvement leverage

AQMC responsibility, Section 2 and
Assessment Tool, Section 4.

Training Project management
methods and techniques

Section 3.5.4, Training.



59

Table 16 provides a mapping from the Sandia ASCI software quality program (this deployment
document and the GP&G) to QC-1. Although QC-1 was evaluated, and appropriate items passed
along to this document via the GP&G, this additional mapping is provided to emphasize the
importance of the standard to nuclear weapon work.

Table 16.  Mapping of Deployment Practices to DOE/AL's QC-1

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
II.  BASIC REQUIREMENTS
1.0  FUNDAMENTALS OF QUALITY

MANAGEMENT
Quality is conformance to customer requirements and
expectations.

Quality is enhanced by manufacturable, robust designs
supplemented by a process of continuous improvement
which focuses on the prevention of errors and reduction of
variability in processes, products, and services.

Quality is measured by the use of appropriate metrics to
assess its effectiveness in reducing operating costs,
increasing productivity, and keeping the total quality cost to
a minimum.

Customer requirements for software are
defined in the GP&G. See mapping from
the GP&G to this deployment document.

2.0  ORGANIZATION
The contractor shall establish and maintain a documented
quality system as a means of ensuring that product
conforms to specified requirements.

Management shall issue quality policy and delegate
administration and oversight of the quality system to a
responsible, independent, and authoritative element of the
organization with clear access to top management.

For software, the quality system is defined
in the GP&G and this deployment
document. Management oversight of the
software quality system is the responsibility
of the AQMC as described in Section 2.0.

The description of the organization
management system, as it applies to criteria
other than software, is outside the scope of
the software deployment document.

3.0  QUALITY MANAGEMENT
The quality system shall be documented and  maintained,
with adequate provisions for internal checks and balances
and management involvement.

The system shall promote an environment that provides for
individual responsibility and accountability for quality.

The system shall be capable of objectively evaluating
quality effectiveness and implementing needed
improvements.

Internal checks of the software quality
system via the assessment tool are described
in Section 4. Management involvement in
the software quality system is described in
Section 2.

Section 3.5.3, Engage in Record's
Management, “ … Sandians their
responsibility in the creation, use,
maintenance, and disposition of records, to
provide training and support for the
implementation of best business practices
with regards to Sandia ASCI records.”

Quality Management of program other then
software is outside the scope of this
deployment document.



60

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments

3.1  CONTINUOUS IMPROVEMENT PROCESS
A quality improvement process which focuses on the
prevention of errors and the reduction of variability shall be
an integral part of the quality system.

This process should be tailored to fit site specific
operations.

The lifecycle process (Figure 3 and Section
3) with reviews at each lifecycle phase,
establish a methodology to prevent software
errors.

Continuous process improvement as applied
to elements other then software is outside
the scope of this deployment document.

3.2  PREVENTION VS. DETECTION
The quality system shall focus on the prevention of errors
and nonconformance and promote building quality into
products and processes.

Fundamental methods, such as design of experiments,
prototyping, process capability studies, Pareto analyses, and
statistical process controls are examples of methods useful
to:
a. characterize processes;
b. continually reduce product and process variability;
c. identify and minimize unstable or error-prone

processes; and
d. provide early feedback of engineering and

manufacturing data to determine
e. the need for product or process changes.

Statistical process control is outside the
scope of this deployment document.

3.3  QUALITY COSTS
The cost of nonconformance plus the cost of conformance
and/or other appropriate metrics shall be utilized for
performance measurement, problem identification, and
problem prevention.

The description of the system to address the
definition, requirements, and control of
Quality costs is outside the scope of this
deployment document.

4.0  TRAINING
A formal training and education program shall be
established for all personnel involved in assembly,
production, manufacturing, inspection, test, repair,
disassembly and administrative support activities. These
personnel shall be reevaluated at intervals not to exceed
three years. In addition, personnel performing special
processes shall require certification based on written
qualification/ certification procedures.

Appropriate records of training, qualification, certification
and reevaluation shall be maintained.

Training within the scope of software issues
is need based, as described in Section 3.5.4.
Other training is outside the scope of this
deployment document.

The description of the record system is
outside the scope of the software
deployment document.  Software training
records maintained as part of ASCI records
program.

5.0  EARLY INVOLVEMENT
The organization responsible for design shall ensure that
production and quality requirements are incorporated in the
design process as early as feasible. The design process shall
provide for the timely identification and evaluation of key

For software, design is subject to three
reviews: technical, quality, and
management. These reviews ensure that
requirements are translated into the design.



61

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
elements that are critical to program success and shall
provide an objective means to measure design, product,
process maturity, and production readiness.
6.0  ESTABLISHING AND VALIDATING

REQUIREMENTS
The following shall be applied to assure that the initiation
of research and development activities includes plans to
identify customer requirements and methods to meet those
requirements.

Management review, at each phase of the
lifecycle, ensures that commitments
(including customer requirements) have
been satisfied.

Outputs of any phase, including
Requirements Phase, are verified for
conformance to established requirements.

6.1  CUSTOMER REQUIREMENTS
There shall be a process for identifying both internal and
external customers and documenting their requirements,
including changes to requirements, and or verifying that
process outputs meet the established requirements.

Section 3.3.1 requires that all requirements
be identified, including customer
requirements (external) and derived
requirements (internal).

6.2  PLANNING
A documented decision process shall be used to determine
which activities require formal plans, and shall include
quality plans applied to projects, functions, products, or
organizational entities.

Plans shall be kept current and shall include requirements,
milestones, responsibilities for performing the work,
identification of risks together with the means for
addressing them, and controls to be applied.

Project management is responsible for
planning, as described in Section 3.4.

6.3  METRICS
Metrics to assess conformance to customer requirements
shall be developed and used to assure needed corrective
actions and improvement measures are taken at the proper
time.

Software metrics described in Section 3.1.4:
“It is strongly recommended that those who
are subject matter experts in the final
product be involved in specifying metrics
designed to increase product quality and
process productivity.”

III. PRODUCT QUALITY REQUIREMENTS
1.0  DESIGN DEFINITION
The design agency shall be responsible for design definition
of items under its responsibility.

Design documents shall incorporate performance
requirements and critical characteristics required for the
function, reliability, interchangeability, life, and safety of
the item.

The design and production agencies shall jointly assure that
design definition provides all necessary information that
requirements are clear, unambiguous, and conform to
standard engineering practices.

A system for qualifying, approving, and issuing design
documents, including changes, shall be established and
followed.

Software design requirements are described
in Section 3.3.2.1.   The description of other
program design elements are outside the
scope of this deployment document.

Traceability from design back to
requirements is required. All requirements
must be translated into the design
document. All software artifacts, including
design, are reviewed for conformance to
commitments. All software artifacts,
including design documents, are subject to
change control.



62

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments

Design documents shall be maintained in a manner that
assures items are procured, manufactured, inspected, tested,
and disassembled to the applicable design agency
requirements.

Procedures and responsibilities shall be established and
maintained to control, verify and provide for change to the
design of the product to assure that all
requirements are met.

Complete, current, and accurate records of product
definition shall be maintained.

2.0  INSTRUCTIONS AND PROCEDURES
A system which provides and controls documented work
instructions for manufacturing, inspection, production and
acceptance testing, maintenance,
repair, assembly and disassembly shall be established.
These instructions shall be available to and followed by the
personnel performing the work.

The system shall assure that instructions and procedures are
adequate, accurate, current, and consistent with design
requirements.

Instructions for use of code may be required
as part of release. These instructions are
subject to review (technical, quality,
management). See Section 3.3.3. All
artifacts produced are reviewed for
consistency with requirements.

Other types of instructions are outside the
scope of this deployment document.

3.0  DOCUMENT CONTROL
A documented system shall be established and maintained
to control all documents and data that relate to the
requirements of QC-1.

The system shall define responsibility for preparing,
reviewing, approving, and issuing documents which are
adequate, complete and correct.

The system shall assure that the latest applicable design
documents and change information are released,
implemented in a timely manner and specify effectively.

In research and development, instructions and procedures
may consist of dated and signed notes in a laboratory
manual.

Document control is outside the scope of
this deployment document.

4.0  PROCUREMENT
4.1  GENERAL
The procurement system shall ensure that purchased
product conforms to all specified requirements and that all
necessary documentation to establish conformance is
provided.

DOE reserves the right to perform quality assurance

Procurement is outside the scope of this
deployment document.



63

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
surveys and verification inspections at vendor and supplier
locations where production materials or services destined
for production application are rendered under a contractor’s
purchase order (contract).

4.2  PROCUREMENT PLANNING
Procurement activities shall be planned and documented to
assure a systematic approach to the procurement process.

Procurement methods and organizational responsibilities
shall be defined.

The procurement system shall, as a minimum, address:
a. procurement document preparation, review, and

control;
b. selection of procurement sources;
c. bid evaluation and award;
d. assessment activities by purchaser;
e. control of nonconformance;
f. root cause and corrective action;
g. acceptance of items or services;
h. supplier's calibration program;
i. quality records;
j. process for controlling and returning defective or

nonconforming material to the supplier; and
k. quality system.

The description of the procurement
planning process is outside the scope of this
deployment document.

4.3  SUPPLIER ASSESSMENT
The purchaser shall select suppliers on the basis of
assessment of ability to meet requirements, including
quality requirements. The selection of suppliers shall be
based on technical reviews performed by the procuring
agency or upon evaluation of historical evidence. Suppliers
shall be monitored and evaluated with regard to the
effectiveness of their quality system and the quality of their
product. The nature and extent of control exercised by the
purchaser over the supplier shall depend upon the type of
product and the supplier's demonstrated performance.

The description of how suppliers are
assessed (supplier assessment) is outside the
scope of this deployment document.

4.4  PROCUREMENT DOCUMENTATION
Procurement documents shall require the supplier to have
an effective quality program. Procurement documents, at all
tiers, shall identify documentation, records to be submitted
or maintained, and specific retention times.
Procurement documents shall provide for access to the
supplier's facility and inspection records by the DOE and/or
the procuring agency.

Procurement documentation is outside the
scope of this deployment document.

4.5  RAW AND COMMERCIAL MATERIAL
Raw and commercial materials to be used in processing or
manufacturing of product shall be tested to determine
conformance to applicable specifications.

Raw and commercial material is outside the
scope of this deployment document.



64

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments

Unless otherwise required by the purchase order or the
product specification, supplier provided test reports may be
accepted in lieu of such tests. When supplier provided test
reports are used as a basis of acceptance, the test results
shall be compared with specification requirements.
Proprietary materials may be accepted on label. The
validity of supplier provided test reports or labels shall be
periodically verified by at least one of the following
methods, as appropriate and within the limits of the
specification:
a. independent testing to requirements determined by the

specification;
b. auditing;
c. testing to typical properties, if verifiable.
d. When conditions such as low volume or proprietary

processes limit the effectiveness of auditing,
independent testing shall be performed within the
limits defined by the specification.

4.6  CERTIFICATE OF CONFORMANCE
A certificate of conformance is required for all weapons
and weapon related materials and hardware destined for
production activities, with the exception of raw and
commercial materials.

The certificate of conformance must include the following:
a. The certificate shall identify the procurement

requirements met by the supplier.
b. The certificate shall be signed or otherwise

authenticated by a person who
c. is responsible for this function and whose function and

position are described in the supplier's quality
assurance program.

The certification system, including the procedures to be
followed in filling out a certificate and the administrative
procedures for review and approval of the certificates, shall
be described in the supplier's quality assurance program.

Such certifications shall be periodically and independently
verified by at least one of the following methods, as
appropriate:
a. independent testing;
b. auditing;
c. testing to typical properties, if verifiable.

Certificate of conformance is outside the
scope of this deployment document.

5.0  IDENTIFICATION, CONTROL, AND STATUS
OF ITEMS

Methods shall be established for controlling the
identification and status of product throughout the product
life cycle until sanitization occurs.

Identification, control, and status of items is
outside the scope of this deployment
document.



65

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
Status shall be identified by using markings, authorized
stamps, tags, labels, routing cards, physical location or
other suitable means.

Unique tooling and fixtures shall be identified and
controlled.

Limited life materials/components shall be identified and
controlled to preclude use of expired items and provide for
efficient recall, if necessary.

Controls shall be established for materials designated for
destructive testing or special evaluation to prevent
inadvertent use/shipment.

Instructions for marking and labeling items shall be
established as necessary to adequately identify, maintain,
and preserve the items, including indication of the presence
of special environments or the need for special controls.

Software used to maintain material control during
automated production, inspection, or disassembly
operations shall demonstrate and assure control of
materials and material status.

6.0  CONTROL OF PROCESSES
Processes shall be characterized, documented, and
maintained under controlled conditions to minimize
product/process variability and to prevent nonconformance.

Proposed product and process changes throughout the
product life cycle shall be evaluated for their potential
impact on quality, producibility and maintainability prior to
incorporation.

Processes, including inspection, test, and acceptance
processes, shall be qualified jointly by design and
production agencies prior to their use for production and
acceptance unless the design agency exempts this
requirement.

The requirement for production process qualification and
characterization may be exempted if production quantities
are such that the process will not be repeated, or if
inspection and/or testing, including inspection and tests
performed on subsequent assemblies, provide adequate
assurance of quality.

Control of processes is outside the scope of
this deployment document.

6.1  PROCESS CONTROL
When production quantities allow, statistical techniques,
such as statistical process control, process capability
studies, and other preventative measures, shall be utilized to

Process control is outside the scope of this
deployment document.



66

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
assure continuous control over production processes and to
identify and continually reduce variability.

Criteria for workmanship shall be stipulated, to the extent
practical, in written standards or by means of representative
standards.

6.2  SPECIAL PROCESSES
Special processes shall be identified, and procedures,
processes, and controls implemented to assure a high level
of confidence in the control of product variability and to
minimize nonconformances.

Methods shall be established to assure conformance to
requirements through qualification and control of
equipment, procedures, and/or personnel training.
Evidence of certifications/qualifications of personnel,
procedures, and equipment shall be maintained.

Special processes are outside the scope of
this deployment document.

7.0  INSPECTION, TEST, AND ACCEPTANCE
Physical examination, inspection, measurement, or testing
of material shall be accomplished under controlled
conditions. Measurement uncertainty of the inspection
technique shall be considered in the selection of inspection
and test equipment or criteria for acceptance or rejection.
When measuring and test equipment is used in making
measurements for acceptance of product, its evaluation and
approval must be documented.

When automated manufacturing systems are used as the
method of acceptance, they shall be designed, validated,
qualified, controlled, and monitored sufficiently to protect
product quality such that the completion of the automated
operation may be accepted as objective evidence of
conformance to requirements.

When fixtures, molds, and other such tooling are used as
the method of acceptance, they shall be certified prior to
release for use.

These devices shall be controlled and recertified at
established intervals.

Product acceptance activities shall be performed to assure
compliance to applicable drawings and specifications.
When material requires modification, repair, or replacement
after product acceptance, there shall be witnessing or
verification of the modification, repair, or replacement and
reverification of any affected characteristics prior to
reacceptance.

Sampling plans shall prescribe random sampling unless

Inspection, test, and acceptance as  it applies
to non-software program elements, is
outside the scope of this deployment
document.



67

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
otherwise approved by the design agency and shall afford a
sound statistical basis to ensure product quality.

Test plans for research and development testing programs
shall be developed and documented for major activities.
The methodologies used to establish test plans shall be
adequate to provide confidence in the results.

8.0  CONTROL OF MEASURING AND TEST
EQUIPMENT

A standards and calibration program shall be maintained for
the purpose of comparing measuring and test equipment
with calibration standards of suitable range and accuracy.
Standards and measurement devices shall be certified for
use in compliance with the requirements of the AL
Appendix 56XB, Development and Production Manual,
Chapter 8.4.

Control of measuring and test equipment is
outside the scope of this deployment
document.

9.0  HANDLING, STORAGE, PACKAGING AND
DELIVERY

Procedures, controls, and facilities shall be maintained to
assure that handling, storage, packaging, and shipping
operations comply with requirements and prevent damage,
deterioration, loss, or substitution.

Handling, storage, packaging and delivery
are outside the scope of this deployment
document.

9.1  GOVERNMENT FURNISHED MATERIAL
Material shipped interproject from one contractor's
responsibility to another will be provided as Government
Furnished Material. Such DOE accepted material
is inspected only for shipping and handling damage by the
receiving contractor unless there are valid reasons for
requiring additional tests or inspections. Discrepancies
noted during assembly or normal handling will be given
proper evaluation and disposition. Discrepancies will be
reported to the responsible contractor through the DOE.

Government furnished material is outside
the scope of this deployment document.

9.2  DOE ACCEPTED MATERIAL
Once material is accepted by the DOE, it is considered to be
property of the DOE and under its management control.
DOE shall be notified when accepted material is issued
from stores for purposes different from the original intent.
DOE shall also be notified when accepted material is issued
to perform additional evaluation, inspection, or rework.

The agency shall describe the need for the material and the
methods that will be used for processing. Any special
handling, storage, processing or evaluation of DOE
accepted material must be approved by DOE prior to
performance.

DOE accepted material is outside the scope
of this deployment document.



68

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
10.0  CONTROL OF NONCONFORMING ITEMS
Procedures shall be established and maintained to ensure
that material, which does not conform to requirements, is
prevented from inadvertent use, shipment or installation.
Control of nonconforming items shall provide for
identification, documentation, evaluation, preservation,
segregation, and disposition, as well as notification to the
organization concerned.

There shall be timely disposition of nonconforming
material with corrective action and root cause reporting to
evaluate possible product or process improvement and any
impact on previously produced product and to minimize the
probability of recurrence.

This activity shall be commensurate with the
complexity and the risk associated with failure of the
product to meet established requirements.

The responsibility for review and the authority for
disposition of nonconforming material shall be defined and
documented. Nonconforming material may be authorized
for "use as is" by the responsible design agency. Repair,
rework, or evaluation of nonconforming items shall be
performed in accordance with documented procedures
approved by the design agency.

Control of nonconforming items is outside
the scope of this deployment document.

11.0  CORRECTIVE ACTION
Procedures for production related activities shall be
established, documented and maintained to:
a. determine the root cause of nonconforming product and

the corrective action needed to prevent recurrence;
b. analyze all processes, work operations, quality records,

and reports to detect and eliminate potential causes of
nonconformance;

c. initiate preventative actions to deal with problems at a
level corresponding to the risk encountered;

d. apply controls to ensure corrective actions are taken
and that they are effective;

e. implement and record changes to procedures resulting
from corrective action.

Any previously produced product with the same conditions
shall be identified and disposition shall be provided.
Corrective action for research and development operations
may be included as noted changes to experiments
documented in a laboratory manual consistent with
requirements in paragraph 3.0, Section III.

Corrective action is outside the scope of this
deployment document.

12.0  RECORDS
Documented procedures shall be established and
maintained for identification, collection, organization,
filing, storage, maintenance, retrieval, distribution, retention

The description of the record system is
outside the scope of this deployment
document.  Software records, as
appropriate, will be subject to record system



69

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
and retirement of records that furnish objective evidence of
quality.
Records shall be complete, identifiable, and shall be
appropriately stamped, initialed, signed and dated by
authorized personnel, or otherwise authenticated in order to
be considered valid. Authentication may include a
statement which clearly identifies the responsible person or
organization.

Records may be original, copies or electronic. Quality
records shall be maintained to demonstrate achievement of
the quality requirements and effective operation of the
quality system. Pertinent supplier quality records shall be
an element of these quality records.

All quality records shall be legible and stored such that they
are readily retrievable in facilities that provide a suitable
environment to minimize deterioration or damage and to
prevent loss. Retention shall comply with DOE
Order 1324.5B, Records Management Program.

Procurement, production, inspection, acceptance testing,
repair and disassembly documentation that provides
traceability to identify product and its origin shall be
maintained. Such records are required to:
a.    certify material quality and provide substantiating

evidence;
b.    identify materials and components contained in the

final product;
c.    provide identification of production and inspection

operations performed on product to help preclude
improper processing or use;

d.    provide for timely recall of suspect product;
e.    provide data with which to analyze performance

problems and take timely corrective action;
f.     provide identification of disassembly performed to help

preclude improper processing or disposition.

requirements as described in Section 3.5.2,
Configuration Management.

13.0  AUDITS
An assessment program shall be established and
documented to independently determine compliance with
requirements and verify the effectiveness of the quality
system. Assessments shall be performed in accordance with
written procedures or checklists.

Assessments shall be scheduled on the basis of the status,
quality history and importance of the activity and shall be
planned to provide coverage and coordination with ongoing
quality program activities.

Assessment results shall be documented and brought to the
attention of personnel having responsibility for the

Software assessments are described in
Section 4. The description of other types of
program assessments are outside the scope
of this deployment document.



70

QC-1 Sandia National Laboratories
ASCI Software Quality Program

QC-1, Revision 9 Mapping / Tailoring Comments
area/process assessed. Deficiencies and noncompliance’ s
identified shall have root cause determination and
correction.

This activity shall be commensurate with the complexity
and the risk associated with failure of the product to meet
established requirements.

Technical reviews for research and development shall
employ design reviews, peer reviews, objective “second
looks”, or other equivalent methods. These reviews shall be
formal, periodic, and utilized as independent assessments.
These processes shall be documented.

14.0   SOFTWARE QUALITY ASSURANCE
A software quality assurance program shall be established
that provides assurance that software is consistent with
applicable specifications.

A definition of Software Verification is in
this deployment document.

Error prevention and software engineering principles shall
be applied to software acquisition, development, use, and
maintenance.

The lifecycle approach applies to all
software falling within the scope of this
deployment document.

Software quality assurance activities shall be commensurate
with the complexity and the risk associated with failure of
the software to meet established requirements.

The scope of the GP&G and this
deployment document. Graded approach.
Software verification testing demonstrates
compliance with established requirements.

The program shall include weapon or weapon-related
software that:
§ controls the function of weapon and weapon-related

components;
§ controls design or design verification;
§ controls production processes or equipment;
§ controls testing or inspection processes or equipment;
§ controls calibration of standards and measurement

devices; or
§ provides analysis capability to determine product

acceptability.
§ 

The scope of the GP&G and this
deployment document.

The program shall address all elements of QC-1 as they
apply to the software component

The ASCI software V&V program consists
of a number of interrelated documents that
implement the elements of QC-1 as applied
to software. This deployment document
implements a subsection of those elements
of QC-1 that apply to software per the scope
section and tailoring described in the
GP&G.



71

Appendix C: Assessment Checklist

A blank checklist begins on the next page.



72

Assessment Checklist for ASCI Apps Software
Development Areas

(1) Application Name:

Application Class:
Assessment Date:

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

Practice

3=Fully
2=Partially
1=Plan to

3=Fully
2=Partially
1=Plan to
0=Not
addressed
NA - not
applicable

3=Fully
2=Partially
1=Plan to
0=Not
addressed
NA - not
applicable

Use this area to explain why NA
is selected as a response to
columns (3) or (4) and to
demonstrate evidence for other
responses as needed.

Software Engineering
1.  Requirements Phase
1a.  Derive software requirements.

Section 3.3.1
1b.  Document software

requirements.

Section 3.3.1
1c.  Assess feasibility, if applicable,

and generate estimates for
budget, resources, etc.

Section 3.3.1
1d.  Establish acceptance criteria

based on requirements.
Section 3.3.1

1e.  Determine necessary links to
other layers of requirements,
code, and tests.

Section 3.3.1
1f.  Ensure requirements traceability

to other product artifacts
throughout subsequent software
phases.

Section 3.3.1
1g.  Review and approve

requirements artifacts.
Section 3.3.1

2.  Development: Design Subphase
2a.  Derive the design.

Section 3.3.2.1
2b.  Communicate the design to the

team.
Section 3.3.2.1



73

(1) Application Name:

Application Class:
Assessment Date:

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

2c.  Document the design.
Section 3.3.2.1

2d.  Evaluate impact to requirements.

Section 3.3.2.1
2e.  Plan for testing: initiate

development of test plan.

Section 3.3.2.1
2f.  Review and approve design

artifacts.

Section 3.3.2.1
3.  Development: Implementation

Subphase
3a.  Evaluate impact of

implementation to design and
requirements.

Section 3.3.2.2
3b.  Translate design into code and

other software product artifacts.

Section 3.3.2.2
3c.  Communicate issues with

requirements/design team and
developers.

Section 3.3.2.2
3d.  Review and approve

implementation artifacts.
Section 3.3.2.2

4.  Development: Test Subphase
4a.  Finalize test plan.

Section 3.3.2.3
4b.  Execute test cases found in test

plan.
Section 3.3.2.3

4c.  Review test case output using
acceptance criteria defined in test
plan.

Section 3.3.2.3
4d.  Document test case results.

Section 3.3.2.3
4e.  Retest updated software if

acceptance criteria is not
satisfied.

Section 3.3.2.3



74

(1) Application Name:

Application Class:
Assessment Date:

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

4f.  Review and approve Test
Subphase outputs.

Section 3.3.2.3
5.  Release Phase
5a.  Receive and evaluate release

request.

Section 3.3.3
5b.  Plan and develop release.

Section 3.3.3
5c.  Review and approve release.

Section 3.3.3
5d.  Create and distribute release.

Section 3.3.3
5e.  Support release, as agreed with

customer.

Section 3.3.3

Project Management
6.  Project Planning
6a.  Submit IP addressing project

tasks annually.
Section 3.4.1

7.  Tracking and Oversight

7a.  Review milestone status
quarterly.

Section 3.4.2
7b.  Issue Baseline Change Proposals

(BCPs), if needed.

Section 3.4.2
7c.  Prepare performance reports on a

quarterly basis.

Section 3.4.2
8.  Risk Management
8a.  Incorporate risk identification

and risk mitigation into project
execution using the BCP.

Section 3.4.3

Support Elements
9.  Requirements Management
9a.  Conduct requirements tracing.

Section 3.5.1



75

(1) Application Name:

Application Class:
Assessment Date:

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

9b.  Determine requirements
ownership and status tracking.

Section 3.5.1
10.  Configuration Management
10a. Conduct issue tracking of

software product artifacts,
including requirements.

Section 3.5.2
10b. Perform version control of

software product artifacts,
including requirements.

Section 3.5.2
10c. Perform release and distribution

management.
Section 3.5.2

10d. Engage in ASCI records
management.

Section 3.5.2
11.  Third Party Software
11a. Accept third party software and

libraries into the application
code domain.

Section 3.5.3
11b. Install, integrate, & control the

accepted third party software.
Section 3.5.3

12. Training
12a. Train appropriate project members

in use of project management and
project tracking and oversight
processes.

Section 3.5.4
12b. Train staff on activities necessary

for producing software artifacts.
Section 3.5.4

12c. Train staff on use of software
tools.

Section 3.5.4
12d. Train staff on software processes

and their implementation.
Section 3.5.4



76

(1) Application Name:

Application Class:
Assessment Date:

(2)
AQMC
Requires:

(3)
Code Team
Evaluation:

(4)
Assessment
Team
Evaluation:

(5)
Comments/Evidence for
Code Team or
Assessment Team

12e. Train staff on software
verification process and
techniques.

Section 3.5.4

Total Number of Areas 12
Total Number of
Practices

46

(6) Completed By:
(print name and date)
(signature)


	Abstract
	Acknowledgements
	Table of Contents
	Executive Summary
	Commitment
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Scope
	1.4 Graded Approach

	2 ASCI Quality Management Council
	3 Software Quality Engineering Practices
	3.1 Document Organization
	3.2 Software Verification
	3.3 Software Engineering
	3.4 Project Management
	3.5 Support Elements

	4 Assessment Tool & Gap Analysis
	References
	Appendix A: Glossary and Acronyms
	Appendix B: Mapping and Tailoring Methods

